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In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate super-
conductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as
orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions.
Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast
dynamics of the bilayer and trilayer nickelates at ambient pressure. We observe a coherent phonon mode
in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7.
Temperature-dependent relaxation time diverges near the density-wave transition temperature of
La4Ni3O10, while it is inversely proportional to the temperature in La3Ni2O7 above �150 K, suggesting
a non-Fermi liquid behavior of La3Ni2O7. Moreover, we estimate the electron–phonon coupling constants
to be 0.05–0.07 and 0.12–0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role
of electron–phonon coupling in the electronic properties of Lan+1NinO3n+1 at ambient pressure. The rele-
vant microscopic interaction and dynamic information are essential for further studying the interplay
between superconductivity and density-wave transitions in nickelate superconductors.
� 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,

including those for text and data mining, AI training, and similar technologies.
1. Introduction

Many unconventional superconductors exhibit a common inter-
play with density-wave states in their phase diagrams. The prime
examples are the charge-density wave (CDW) and spin-density
wave (SDW) in high-temperature cuprate superconductors [1–4]
and iron-based superconductors [5–9]. Recently, high-
temperature superconductivity has been discovered in layered
nickelates in Ruddlesden-Popper (RP) phase under moderately
high pressure [10–15]. Likewise, density-wave states have been
revealed in the phase diagram of both bilayer and trilayer nicke-
lates in RP-phase at ambient pressure [10,12-14,16-21]. Appar-
ently, the exploration of the density-wave states in RP-phase
nickelates will not only provide important insights into their nor-
mal state properties but also help construct a unified picture of
unconventional superconductivity.

Ultrafast laser pulses possess a unique capability to disentangle
different degrees of freedom at ultrashort time scale and extract
dynamic information about ordered states, including relaxation
process, microscopic coupling nature, and energy gap dynamics
[22]. Based on the pump–probe technique, time-resolved probes
have been widely used to investigate the density waves in different
systems [23–26], including many nickelate compounds. In particu-
lar, ultrafast optical spectroscopy has revealed rich intriguing
dynamic behaviors of nickelate superconductors, such as photo-
excited phase fluctuations preserving long-range order [27],
ing, and
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ultrafast charge localization and the dynamics of the pseudogap
[28], vibrational symmetry breaking process [29], and the evidence
for d-wave superconductivity [30].

In this work, by employing time-resolved reflectivity measure-
ments, we systematically investigate the ultrafast dynamics of the
bilayer and trilayer nickelates at ambient pressure. Despite their
similar structure based on Ni-O layers, we observe drastic differ-
ence in their dynamic behaviors. The relaxation time of La4Ni3O10

diverges around the density-wave transition temperature, suggest-
ing an energy gap of about 16.7 ± 4.3 meV, which is in drastic con-
trast to the weak kink-like features in La3Ni2O7. The ultrashort
laser pulse excites a coherent phonon mode involving collective
motions of La, Ni, and O atoms, which is absent in La3Ni2O7. More
importantly, the extracted electron–phonon coupling (EPC) con-
stant in La4Ni3O10 is more than twice the value in La3Ni2O7, consis-
tent with the difference in the relaxation time of the two systems.
Our investigation advances the understanding of the normal-state
properties of newly discovered high-temperature nickelate super-
conductors and sheds light on the unconventional superconductiv-
ity in nickelates.
2. Materials and methods

2.1. Crystal synthesis

Single crystals of La3Ni2O7 and La4Ni3O10 were grown by the
high-pressure optical floating zone technique [31]. Raw materials
of La2O3 (99.99%) were heated at 900 �C overnight to remove the
undesired La(OH)3 phase. Subsequently, La2O3 and NiO (99.99%)
powders were mixed in a stoichiometric ratio with 1%–2% excess
of NiO to compensate for its evaporation at high temperatures.
The mixture was then pressed into pellets and sintered at
1100 �C in the air for 48 h with several intermediate grindings.
The reactant was pressed into rods with a diameter of about
6 mm and a length of about 14 cm under hydrostatic pressure
and then sintered at 1300 �C for 2 h. The single crystals of La3Ni2-
O7 and La4Ni3O10 were then grown in a high-pressure optical float-
ing zone furnace (HKZ-300) with an oxygen pressure of 15 and
20 bar, respectively. The feed and seed rods were counter-rotated
with speeds of 20 and 25 r min�1, respectively. Growth rates of 2
and 5 mm h�1 were used for the La3Ni2O7 and La4Ni3O10 phases,
respectively.

2.2. Tr-reflectivity measurements

Tr-reflectivity experiments were conducted using a Ti:sapphire
oscillator with a center wavelength of 800 nm and a repetition rate
of 80 MHz in a standard wavelength-degenerate pump–probe
setup. Both the pump and probe beams are linearly polarized in
a cross-polarization configuration to eliminate pump scattering.
The pump and probe beams are focused to 26 and 12 lm on the
sample, respectively. The intensity of the pump beam was modu-
lated by an optical chopper at 3 kHz to facilitate lock-in detection.
The overall temporal resolution is compressed to 40 fs using
negative-dispersive mirrors. The reflectivity signal was detected
by a balanced detector to mitigate laser power fluctuations. The
sample was cleaved and subsequently kept in a cryostat under a
vacuum of better than 1 � 10�3 mbar during experiments.

2.3. Raman spectroscopy

Raman spectra at room temperature were acquired in the
backscattering geometry with a Jobin-Yvon HR800 Raman system
equipped with a 532 nm diode-pumped-solid-state laser, a
100 � objective (numerical aperture = 0.9), and a liquid-
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nitrogen-cooled charge-coupled-device detector. Laser plasma
lines were removed via BragGrate bandpass filters. High resolution
of 0.32 cm�1 was achieved by employing a grating with 2400 lines
per mm. Three BragGrate notch filters were strategically applied to
enable the lowest frequency down to 5 cm�1. Temperature-
dependent Raman data were similarly acquired, albeit with varia-
tions. A 785 nm solid-state laser and a 50 � objective (numerical
aperture = 0.55) were employed. An edge filter enabled the mea-
surement down to 20 cm�1 and a grating with 1200 lines per
mm was used to achieve the spectral resolution of 0.36 cm�1.
The experimental setup incorporated a Montana cryostat system
to achieve low temperatures and maintained the sample under a
vacuum of 0.1 mTorr (1 mTorr = 0.01333224 Pa).

2.4. Density-functional theory calculations

The density-functional-theory (DFT) calculations were per-
formed using the Vienna Ab initio Simulation Package (VASP)
[32]. The electronic correlations were described by the Perdew-
Burke-Ernzernhof functional [33]. The plane-wave cutoff energy
was chosen to be 500 eV. Concerning the Brillouin zone integra-
tion, we use a 7 � 7 � 2 Monkhorst-Pack k-grid (spacing between
k-points is 0.18 Å�1). Structural relaxation was performed with a
conjugated-gradient algorithm until the Hellmann-Feynman forces
on each atom were less than 1 meV Å�1 and the total energy was
less than 10�6 eV. To accelerate the calculation, we calculated
the phonon dynamic matrix without expanding the primitive cell.
The phonon spectrum and phonon eigenvectors were further
obtained by using PHONOPY [34] with the frozen-phonon method.
3. Results and discussion

Fig. 1a and b compare the crystal structures of La3Ni2O7 and La4-
Ni3O10 at ambient pressure. In each unit cell, two (three) Ni-O layers
form a bilayer (trilayer) structure by sharing apical oxygen atoms.
Temperature-dependent resistivity of La3Ni2O7 was manifested by
the kink-like features (Fig. 1c), which were attributed to density-
wave transitions [10,17]. However, it should be noted that the com-
plicated structural imperfections of La3Ni2O7, including the oxygen
vacancies [35] and the intergrowth with other La3Ni2O7 phases and
La4Ni3O10 [15, 36–38], may also induce the kink-like features in the
transport measurements. By contrast, a well-defined CDW/SDW
transition is revealed by a rapid increase of the resistivity near
132 K with decreasing temperature in La4Ni3O10 (Fig. 1c), which
is also evidenced by the cusp in the susceptibility and specific heat
[39–42]. The resistivity then peaks near 120 K and decreases mono-
tonically down to the lowest temperature. Fig. 1d compares the
Raman spectra of La3Ni2O7 and La4Ni3O10 at room temperature. In
the high-frequency range (200–600 cm�1), the evident phonons
locate near 564 cm�1 (16.92 THz) and 396 cm�1 (11.88 THz) in La3-
Ni2O7 and La4Ni3O10, respectively. Notably, La4Ni3O10 exhibitsmore
low-frequency phonons below 200 cm�1, likely due to its more
complicated trilayer structure and lower crystal symmetry, which
allow more phonon modes [43,44].

Fig. 2 shows the prototypical transient change of the optical
reflectivity, DR=R ¼ ½R tð Þ � R0�=R0, where R0 is the reflectivity mea-
sured before the pump pulse arrives. Overall, both the data of La3-
Ni2O7 and La4Ni3O10 show an instantaneous excitation followed by
an exponential decay (Fig. 2a and b). By fitting the data at 80 K to a
single-exponential decay (Supplementary materials, Figs. S2 and
S3 online), we obtain relaxation time around 3.68 and 0.57 ps for
La3Ni2O7 and La4Ni3O10, respectively. The difference in their
relaxation time suggests distinct relaxation processes in the two
systems, consistent with their different resistivity behaviors.
Moreover, on top of the exponential decay, there is a periodic



Fig. 1. Basic properties of La3Ni2O7 and La4Ni3O10. (a, b) Crystal structures of La3Ni2O7 (a) and La4Ni3O10 (b). (c) Temperature-dependent resistivity of La3Ni2O7 (blue curve)
and La4Ni3O10 (green curve) at ambient pressure, black arrows indicate kink-like features in La3Ni2O7. (d) 532 nm Raman spectra of La3Ni2O7 and La4Ni3O10, measured at room
temperature.

Fig. 2. Excitation of coherent phonons in La4Ni3O10. (a) Transient reflectivity change DR=R of La3Ni2O7 at 80 K. (b) DR=R of La4Ni3O10 at 80 K showing the observation of
coherent phonon vibrations. The inset shows the oscillatory part of the signal after subtracting the single-exponential background. (c) Fourier transform of the oscillating part
of the signal, the most prominent phonon mode locates at 3.87 THz. The inset shows the corresponding vibration of the atoms with the red arrows indicating the vibration
directions. For simplicity, La atoms vibrating mainly in the plane are not shown (see the Supplementary video). (d) Temperature-dependence of the coherent phonon
frequency of La4Ni3O10 measured using ultrafast reflectivity and Raman experiments. Data of the ultrafast reflectivity were collected at the pump fluence F = 7lJ cm�2.
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oscillation of the transient reflectivity of La4Ni3O10 (inset of
Fig. 2b), which is, however, absent in La3Ni2O7.

The observation of the oscillation implies the excitation of
coherent phonon modes, as evidenced by the Fourier transform
of the oscillation data (Fig. 2c). With the help of DFT calculation,
the most prominent phonon mode at 3.87 THz (129 cm�1) is iden-
tified as the Ag mode involving collective motion of La, Ni, and O
atoms (inset of Fig. 2c). Within the trilayer unit cell, the La atoms
vibrate mainly in the plane. The outer Ni atoms exhibit both out-
of-plane and in-plane vibration, while the inner Ni atoms stay
put. The apical O atoms vibrate mainly in the plane, in contrast
to the in-plane O atoms vibrating in both in-plane and out-of-
plane directions (See Supplementary materials, Fig. S5 (online)
and the Supplementary video for details). This phononmode is also
observed in the Raman data of La4Ni3O10 but absent in La3Ni2O7

(red arrow in Fig. 1d). Fig. 2d summarizes the temperature evolu-
tion of the frequency of the coherent phonon (the Supplementary
materials), which gradually softens with increasing temperature.

Such a collective motion with Ag symmetry involving different
vibrations of Ni-O atoms is, in principle, not possible in the bilayer
La3Ni2O7 due to the symmetry limitation. On the other hand, as
inspired by the unique SDW state in La4Ni3O10, where only the
outer Ni-O layers show a periodic modulation of the spin moment
[39], we propose that the excited coherent phonon with distinct
motion of the three Ni-O layers may provide a coherent manipula-
tion of the SDW order in La4Ni3O10.

Fig. 3 explores the temperature evolution of the ultrafast optical
reflectivity. The false-color plots of the transient reflectivity of
Fig. 3. Temperature-dependent transient reflectivity change DR=R. (a, b) The false-co
La4Ni3O10 (b). (c, d) Typical temporal evolution of DR=R in La3Ni2O7 (c) and La4Ni3O10 (d)
Data were collected at the pump fluence F = 7 lJ cm�2.
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La3Ni2O7 and La4Ni3O10 in Fig. 3a and b reveal clear difference in
their temperature-dependent behaviors. The relaxation time of
La3Ni2O7 is continuously prolonged as the temperature decreases.
However, it increases abruptly near the density-wave transition
temperature in La4Ni3O10, in line with the previous observations
in various density-wave materials [45–48]. The different tempera-
ture dependence of the dynamics in the two nickelates is further
evidenced by the transient reflectivity change at selected temper-
atures shown in Fig. 3c and d.

To quantify the change of the dynamics across the CDW/SDW
transition, we extract the amplitudes A and relaxation times s of
the transient reflectivity change DR=R by fitting the data to a
single-exponential decay (Supplementary materials, Figs. S2 and
S3 (online). Fig. 4 summarizes the results as functions of the tem-
perature and the pump fluence. In La3Ni2O7, both A and s decrease
monotonically with the elevated temperature. We note the
changes of the slope of A and s (Fig. 4a and b), which may be
related to the kink-like features in the resistivity and other trans-
port measurements (black arrows in Fig. 1c) [31,39]. Interestingly,
we observe a linear temperature-dependence of the scattering rate
1=s as shown in the inset of Fig. 4b, which suggests a non-Fermi
liquid behavior of the system, consistent with the previous optical
spectroscopy experiment [49].

The results in La4Ni3O10 are qualitatively different from La3Ni2-
O7. The amplitude shows a dip and the relaxation time shows a
profound divergence near the CDW/SDW transition temperature
(Fig. 4c, d, and the Supplementary materials). This divergent
behavior has been widely observed in density-wave materials
lor plot of temperature-dependent transient reflectivity data of La3Ni2O7 (a) and
at selected temperatures. The black curves are the phenomenological fit of the data.



Fig. 4. Evolution of the amplitude A and relaxation time s of transient reflectivity change. (a, b) Temperature dependence of A (a) and s (b) extracted in La3Ni2O7. The inset of
panel (b) shows the temperature dependence of 1=s. (c, d) The same as (a) and (b) but for La4Ni3O10. The red curves are the fit of the data to the Rothwarf-Taylor (R-T) model.
Data in (a–d) were collected at the pump fluence F = 7 lJ cm�2. (e, f) Fluence dependence of A (e) and s (f) extracted in La3Ni2O7. (g, h) The same as (e) and (f) but for
La4Ni3O10. The red curve in (h) is the fit of the data (see the main text). Data in (e–h) were measured at 80 K.
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[45–48], which can be understood within the Rothwarf-Taylor (R-
T) model aiming to elucidate the bottleneck effect caused by an
energy gap [50]. The nice conformity between our data and the
R-T model confirms the prototypical gap dynamics in the CDW/
SDW state of La4Ni3O10. By fitting the model to our data in
Fig. 4c and d, we obtain an energy gap of D0 = 16.7 ± 4.3 meV
(the Supplementary materials), in good agreement with the previ-
ous angle-resolved photoemission spectroscopy (ARPES) measure-
ment [51,52]. In La3Ni2O7, although a gap of about 50 meV was
reported in the Ni-dz2 band in the optical spectroscopy measure-
ment of La3Ni2O7 [49], a well-defined density-wave gap is elusive
in the ARPES [53,54], and the density-wave transition is absent
in the ultrafast experiment here.

We further estimate the EPC constant k based on the relation
s ¼ pkBTe=3�hkhx2i [55–58], where kB and �h are Boltzmann and
reduced Planck constant, respectively, khx2i is the second moment
of the Eliashberg function, and Te is the electron temperature esti-
mated with the two-temperature model [55,56]. Using this simple
model, we obtain khx2i = 37.78 meV2 and khx2i = 123.55 meV2 for
La3Ni2O7 and La4Ni3O10, respectively (the Supplementary materi-
als). After initial thermalization, the interaction with Debye pho-
nons is the most efficient channel for the relaxation of hot
carriers. It is therefore reasonable and commonly used to estimate
hx2i using Debye phonons, that is, hx2i / H2

D [59–61], whereHD is
the Debye temperature. With HD = 383 K (33.0 meV) [62] and
HD = 459 K (39.6 meV) [12] for La3Ni2O7 and La4Ni3O10, we obtain
k = 0.05–0.07 and k = 0.12–0.16, respectively (the Supplementary
materials). These values are consistent with the rough estimation
using k � �h=sXD = 0.04 and 0.11 for La3Ni2O7 and La4Ni3O10,
respectively, where XD is the Debye frequency [63]. The EPC con-
stant of La4Ni3O10 agrees well with the value of k = 0.124 given
by the transport experiment [42] and those in other nickelates
[64]. It is noteworthy that the estimated weak EPC constant at
ambient pressure should not completely exclude the role of EPC
in the high-temperature superconductivity at high pressure.
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Recent calculations have predicted an enhanced EPC constant as
large as 1.75 in pressurized La3Ni2O7 [65], which requires further
experimental investigations.

Finally, we show the results measured under different pump
fluences (F) at 80 K in Fig. 4e–h. Due to the increased photo-
excited carriers, the amplitude of DR=R linearly increases with
the pump fluence in La3Ni2O7, with a signature of saturation or
change of the slope at high-fluence regime (the damage threshold
for La3Ni2O7 crystals is about 100 lJ cm�2) (Fig. 4e). Similar to the
temperature-dependent experiments in Fig. 4b, the relaxation time
continuously decreases with the pump fluence. In La4Ni3O10, how-
ever, we observe a clear anomaly near 48 lJ cm�2 in both the
amplitude and relaxation time. In particular, the fluence-
dependent relaxation time drastically increases at 48 lJ cm�2,
which fits nicely to the assumption that the relaxation time is
inversely proportional to the gap D and the gap is suppressed by
ultrashort laser pulse according to D ¼ D0ð1� F=FTÞ (red curve in
Fig. 4h) [66], where FT is the threshold fluence required to suppress
the density-wave order. The threshold fluence of 48 lJ cm�2 corre-
sponds to about 5.4 meV per unit cell, about one order larger than
the electronic condensation energy of N EFð ÞD2=2 � 0.42 meV,
where N(EF) is the electronic density of states at EF. This observa-
tion is on contrary to the results in the excitonic CDW material
TiSe2 [67] but in line with those in the prototypical Peierls CDW
material (K, Rb)0.3MoO3, where a large amount of photon energy
is deposited to the lattice [23,68].

4. Conclusion

In summary, we present a comprehensive ultrafast optical
reflectivity study of La3Ni2O7 and La4Ni3O10. While La4Ni3O10 exhi-
bits a prototypical density-wave dynamics, La3Ni2O7 shows a weak
transition-like behavior with a non-Fermi liquid behavior at high
temperatures, suggesting a drastic difference in the density-wave
states of the two compounds. Moreover, we observe the excitation
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of coherent phonon modes involving different vibrations of the
three Ni-O layers in La4Ni3O10, which may provide a route to coher-
ently control the magnetism of the system. Our findings provide
dynamic information on the interplay of multiple degrees of free-
dom in the nickelates, which will deepen our understanding of
the normal state and superconducting properties of Ni-based
high-temperature superconductors.

Note: During the preparation of the manuscript, we noted two
independent works about the ultrafast dynamics of La3Ni2O7 [69]
and La4Ni3O10 [70] with consistent results.
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