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The advent of twist angle between bilayer graphene unam-
biguously provides an effective platform to engineer the band 
structure of graphene and hence its electronic and optical 

properties. By precisely adjusting the twist angles, exotic phenom-
ena can be stimulated, such as the tunable Van Hove singularities1–3, 
quantized anomalous Hall effect4–6, unconventional superconduc-
tivity7–9 and topological insulator states10–12, which initiate the field 
of twistronics. To fully explore these emerging properties and accel-
erate their potential applications, the scalable growth of twisted 
bilayers with controllable angles and clean interfaces is desperately 
demanded.

To date, many efforts have been devoted to the fabrication of 
twisted bilayers, whose core idea is to couple two individual layers 
into a bilayer. These approaches can be roughly divided into two 
types, including the transfer methods, for example, polymer-based 
dry transfer13,14 or liquid-assisted wet transfer15,16, and folding 
methods, for example, by ultrasonic excitation17, ‘self-folding’18 
or through a micromanipulation technique such as scanning 
probe microscopy19–21. However, all these strategies are based on a 
post-production process, which suffers from issues of low through-
put, harsh controllability or unavoidable interlayer contamination.

In fact, the most straightforward way to obtain large twisted 
bilayer graphene (TBG) with clean interfaces is to directly grow 

bilayers with a designed angle. Continuous efforts and progress 
have been made along this direction, for example, the hetero-site 
nucleation strategy22, the atomic-stepped copper (Cu) arrangement 
technique23 or the plasma-assistant growth process24. Specifically, 
30° TBG can be frequently obtained since it has a lower formation 
energy compared with other twist angles around it25,26. However, 
the direct growth of bilayer graphene with arbitrarily designed 
twist angles has not been realized yet. The great challenges mainly 
include the following two aspects: (1) the two graphene layers tend 
to align parallelly since they experience the same surface topogra-
phy of the epitaxial substrate, thereby forming energy-favourable 
AB-stacked bilayers27–30; (2) the direct nucleation of twisted bilayers 
only occurs randomly at the defect sites, tortuous steps or struc-
tured surfaces, where neither the twist angle nor the number of lay-
ers can be accurately controlled25,31,32. In light of the drawbacks in 
both post-stacking/folding methods and direct growth methods, it 
is in great demand to exploit new methods to acquire large bilayer 
graphene with designed twist angles.

Fortunately, unidirectional monolayer graphene can be unam-
biguously grown by surface-periodic-potential-guided epitaxial 
growth33–37, where the direction of monolayer graphene is uniquely 
determined by the surface lattice orientation of the epitaxial sub-
strate. Therefore, if two prestacked substrates are rotated with a 
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designed twist angle, the epitaxially grown monolayers between 
the two substrates will inherently form a twisted structure, whose 
angle is accurately determined by the two rotated substrates. Based 
on this idea, we develop a strategy to grow bilayer graphene with a 
controllable twist angle by prerotating two single-crystal Cu(111) 
substrates. Different from the post-stacking/folding methods, the 
angle replication from the prestacked substrates can produce a 
clean interface and form an intrinsic van der Waals (vdW) coupled 
twisted bilayer. Additionally, in contrast to conventional growth 
methods, the twist angle is locked by the two Cu foils (Cu–gra-
phene interaction of ~46 meV per atom (ref. 38) is stronger than gra-
phene–graphene vdW interaction of ~30 meV per atom (ref. 39)),  
and wide-range twist angles (even a small angle like 1°) could be 
achieved in principle. Therefore, this work provides an effective 
avenue for the precise design and massive fabrication of large TBG.

Strategy to produce TBG by angle replication
Single-crystal Cu(111) foil has been proven to be an ideal epitaxial 
substrate for graphene growth due to their surface symmetry match-
ing (both have C3 rotational symmetry) and small lattice mismatch 
(4%), which ensure the consistent orientation of graphene domains 
and further formation of large single-crystal graphene film40. In our 
design (Fig. 1), a single-crystal Cu(111) foil with a straight edge 
was chosen and then cut into two pieces. Since the edges of the two 
obtained pieces (Fig. 1, red and violet arrows) are parallel, the angle 
between the lattice orientations of the two Cu foils is equivalent to 
the rotation of the marked edges.

After stacking the two pieces and fixing them with a designed 
rotation angle α, graphene was epitaxially grown on the single-crystal 
Cu(111) surfaces by the chemical vapour deposition (CVD) method. 
Two monolayer graphene films were formed between adjacent Cu 
foils, and therefore, the rotation angle α was replicated from the Cu 
foils due to the fixed orientation in epitaxial growth. Subsequently, 
the temperature was further elevated to ensure the soft Cu foil and flat 
Cu surface (Supplementary Fig. 1), where the graphene–graphene  

vdW interaction themselves lead to the formation of a uniform 
bilayer with a replicated rotation angle α. Finally, to peel the TBG 
off, an equipotential surface etching method was developed to 
homogeneously remove the Cu foil on one side. Through this strat-
egy, we can obtain large bilayer graphene with arbitrary twist angles 
by artificially replicating the relative rotation angle of Cu foils on a 
macroscale.

Confirmation of angle replication
High-quality single-crystal Cu foil with the (111) facet index was 
obtained through the seeded growth method41 (Methods and 
Supplementary Fig. 2a) and was further electropolished to access a 
smoother surface with a roughness within 20 nm (ref. 42). Electron 
backscatter diffraction (EBSD) and X-ray diffraction (XRD) were 
employed to verify the single-crystalline nature of the Cu foil. Both 
large-area uniform blue colour in the inverse pole figure (IPF) maps 
(Fig. 2b and Supplementary Fig. 2c–e) and the pronounced Cu(111) 
peak in the XRD 2θ-scan data (Supplementary Fig. 2b) verify the 
high-quality (111) facet of the as-prepared Cu foil. Here the appli-
cation of high-quality single-crystal Cu(111) substrates is the basis 
for ensuring the highly orientated single-crystal graphene domains.

Following the strategy indicated in Fig. 1, two Cu foils derived 
from the same single-crystal Cu(111) were stacked with a designed 
rotation angle α (here we choose α = 14° as an example; Methods 
and Supplementary Fig. 3). To accurately measure the rotation angle 
between the two Cu(111) foils (noted as 1 and 2; Fig. 2a), the EBSD 
pole figures (PFs) were collected on Cu(111)-1 and Cu(111)-2, 
which present a relative rotation angle of 14.3° (Fig. 2c). In the XRD 
φ-scan data, the three-fold symmetry of the diffraction peaks cor-
responding to Cu(002) indicates the high crystallinity of Cu(111) 
and gives a relative rotation angle of 14.2° between the two Cu foils 
(Fig. 2d). Using these two methods, nine samples (with the designed 
angle of α = 14°) were measured to evaluate the manual operation 
deviations. Both EBSD (Fig. 2e) and XRD (Supplementary Fig. 4) 
statistical data showed that all the rotation angles are distributed 
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Fig. 1 | Schematic for the growth design of TBG. A piece of single-crystal Cu(111) foil was cut into two pieces with parallel edges (marked in red and 
violet). Then, the two pieces were stacked with rotation angle α between the two marked edges. After that, graphene was epitaxially grown between 
the two adjacent Cu(111) surfaces by the CVD method. Bilayer graphene with twist angle α was subsequently obtained by heating the Cu to an elevated 
temperature and was finally isolated after etching the Cu away.
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between 13.5° and 14.5°, indicating that the experimental accuracy 
of the rotation angle control for Cu foils is within 1.0°.

Furthermore, to check the replication effect of the twist angles, 
individual graphene domains were epitaxially grown simultaneously 
on the two Cu foils. Aligned hexagonal domains are observed on the 
surface of each Cu(111) substrate, and the relative angle of graphene 
between the two Cu foils is ~14°, which is consistent with the designed 
angle of Cu stacking (Fig. 2f,g). To realize the full coverage of gra-
phene monolayers between the two Cu foils, the epitaxial growth of 
graphene was accomplished at 1,050 °C (Methods). In the following 
procedure, we raised the temperature to ~1,074 °C, at which the Cu 
foils become soft and their surfaces are atomically flat. Then, the gra-
phene–graphene vdW interaction leads to the automatic formation 
of Cu/TBG/Cu sandwich structure with an intrinsically clean inter-
face between the two graphene layers (Supplementary Fig. 5). The 
control of this elevated temperature is critical to form high-quality 
bilayers. If it is too low, for example, 1,060 °C, the two graphene/
Cu layers cannot be adhered seamlessly, resulting in an ~20 μm gap 
between them. If it is too high, for example, 1,080 °C, the Cu foils can 
be easily melted (Supplementary Fig. 6).

Equipotential surface etching method to isolate bilayer 
graphene
Bilayer graphene was successfully isolated from the sandwich struc-
ture via a custom-developed equipotential surface etching method 
to remove the Cu foil on one side (Fig. 3a). Here two parallel Pt 
electrodes were immersed into an (NH4)2S2O8 solution to establish 
a uniform electric field. The Cu/TBG/Cu sandwich structure with 
one side protected by a thermal release tape (TRT) was parallel to 
the two electrodes in the solution, ensuring an equipotential surface 
on the Cu foil. During the etching process, Cu2+ ions equably dis-
solved from the surface of the Cu foil and migrated along the direc-
tion of electric field, and finally deposited on the cathode, instead 
of gathering near the surface of the Cu foil or forming a complex 
with S2O8

2−, thereby avoiding heterogeneous etching and decrease 
in etching speed43.

Meanwhile, to monitor the accurate time of graphene exposure, 
the amperometric method was applied to track the etching degree 
(Methods). As shown in Fig. 3b, the current slightly decreases before 
approaching the surface of bilayer graphene due to the reduction 
in roughness and thickness of the Cu foil during equable etching. 
When close to the graphene layers, a significant concave current 
change occurs, attributable to the inert electrochemistry of exposed 
graphene44 and the increased specific surface area of the etched Cu 
foil on the other side45,46. Experimentally, once the trend of concave 
current appears, the complete bilayer graphene can be extracted in 
the next ~6 min (Fig. 3b (inset) and Supplementary Fig. 7), with a 
representative area of ~2 cm × 1 cm (Fig. 3c).

Subsequently, the centimetre-scale bilayer film was transferred 
onto the SiO2/Si substrate by a commonly used wet transfer method 
(Methods). The uniform contrast in the optical images demonstrates 
the full coverage of bilayer graphene (Fig. 3d and Supplementary 
Fig. 8). The Raman mappings of the 2D/G intensity ratio (I2D/IG) and 
R-mode intensity prove the uniformity of the fabricated ~14° TBG 
(Fig. 3e,f and Supplementary Fig. 9). In addition, the appearance of 
the layer-breathing mode in the Raman spectra demonstrates the 
well-coupled characteristic between the two layers (Supplementary 
Fig. 10). The twist angle of ~14° was further confirmed by the moiré 
pattern in the high-resolution transmission electron microscopy 
(HRTEM) images and the corresponding fast Fourier transform 
image (Fig. 3g and Supplementary Fig. 11). Meanwhile, the statisti-
cal results extracted by 140 selected area electron diffraction (SAED) 
patterns of a millimetre-scale 14° TBG showed a narrow distribu-
tion of twist angles of approximately 1.0° (Supplementary Fig. 12), 
which is consistent with our design. Angle-resolved photoemission 
spectroscopy (ARPES) unequivocally revealed the typical band 
dispersion of the twisted bilayer (Fig. 3h,i). The constant-energy 
contours at different binding energies showed that two Dirac cones 
shifted in momentum space due to the twist angle of ~14°, where 
the top layer (left) had higher intensity and the bottom layer (right) 
had lower intensity (because of matrix element effects, only the 
part of the band corresponding to k > K (K ≈ 1.70 Å–1) is visible)47. 
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The photocurrent data of twisted-bilayer-based devices (Fig. 3j 
and Supplementary Fig. 13) exhibited the same peak positions at 
~520 nm (photon energy, 2.38 eV), which is consistent with the 
transition energy between the two Van Hove singularities of 14° 
TBG (ref. 48).

Tunability of twist angles
Our growth method is proven to be applicable to various twist 
angles by facilely controlling the stacking angles of Cu foils. 
Raman spectroscopy was used to characterize bilayer graphene 
since it possesses rich vibrational signatures compared with 
monolayers49,50, such as the varied intensity ratio of I2D/IG and the 
full-width at half-maximum (FWHM) of the 2D band, as well as the 
rotation-induced intra- and intervalley scattering modes of R′ and 
R band at small twist angles (3° < θ < 9°) and near the critical angle 
(θc ≈ 12°), respectively.

Here we deliberately chose the designed rotation angle α as 
0°, 5°, 12° and 30° at which apparent variations were observed 
in their Raman spectra (Fig. 4a–d). For the parallelly stacked Cu 
foils (α = 0°), the I2D/IG ratio and the FWHM of the 2D band are 
indicated to be ~1.2 and ~57 cm–1, respectively (Fig. 4a), which are 
typical characteristics of AB-stacked bilayer graphene. In addition, 
the corresponding moiré pattern in the HRTEM image and SAED 

pattern also confirm the AB-stacking order (Fig. 4e,i), where the 
intensity ratio between the diffraction spots (112̄0) and (101̄0) is 
greater than 2. This phenomenon can be well understood since the 
AB-stacked structure is the most stable one with a twist angle of 0° 
(refs. 51,52).

For the α = 5° case, the absence of the defect-induced peaks of the 
D (~1,350 cm–1) and D′ (~1,620 cm–1) bands manifests the emerg-
ing peak as the R′ band at the position of ~1,622 cm–1. Meanwhile, 
the I2D/IG ratio and FWHM of the 2D band are ~1.0 and ~36 cm–1, 
respectively (Fig. 4b). All these features suggest a small twist angle, 
which is finalized as ~5.3° by the HRTEM image and SAED pat-
tern (Fig. 4f,j). When α is designed as 12°, a pronounced G-peak 
enhancement and a tiny R peak located at ~1,478 cm–1 are observed 
(Fig. 4c,g,k), which can be attributed to the resonant excitation pho-
ton energy with the energy separation of the Van Hove singulari-
ties. Moreover, bilayer graphene with a twist angle of 30° can also 
be accurately fabricated (Fig. 4h,l), whose I2D/IG ratio is ~4.4 and 
2D-band FWHM is ~27 cm–1 (Fig. 4d). Large-area Raman mappings 
of the typical peaks further confirmed the small-angle deviation of 
the as-synthesized bilayer graphene (Supplementary Fig. 14).

Till now, the direct growth of bilayers with small twist angles 
is extremely challenging, as they will automatically tend to trans-
form to the energy-minimum state with a twist angle of 0° at higher 
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temperature53,54. In our design, the twist angle is locked by the two 
Cu foils and now make it possible to realize the small twist angles 
in CVD growth. We successfully grew bilayer graphene with a 
designed twist angle of 1° (Supplementary Fig. 15). The HRTEM 
image showed a clear moiré pattern with a period of ~15 nm, corre-
sponding to a twist angle of ~0.94°. Furthermore, the SAED pattern 
indicated a twist angle of ~1° as well.

Conclusions
We report an angle replication strategy to produce large TBG, which 
can get rid of interfacial contamination between the two layers 
occurring in conventional methods. The twist angles of bilayer gra-
phene can be readily tuned by predesigning the rotation angle of the 
two single-crystal Cu(111) foils, and an equipotential surface etch-
ing method is developed to isolate it from the Cu/TBG/Cu sandwich 
structure. The flexibility in arbitrary twist-angle design and the pro-
ductivity in centimetre scale demonstrate the advances of our strat-
egy. In view of the similar growth mechanism of two-dimensional 
materials, we propose that the way to tune the twist angles of bilayer 
graphene derived in this work can guide the growth of other twisted 
crystalline two-dimensional materials, thereby providing the mate-
rial foundation for future device applications of twistronics.
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Methods
Production of single-crystal Cu(111). A piece of polycrystalline Cu foil (25 μm 
thick, 99.8%, Sichuan Oriental Stars Trading, #Cu-1031) was placed on a flat 
quartz substrate and then loaded into a hot-wall tube furnace (Tianjin Kaiheng, 
custom designed). The furnace was ramped to 1,020 °C in 1 h and maintained 
at this temperature for 2 h under 500 s.c.c.m. Ar and 50 s.c.c.m. H2. The reduced 
atmosphere is necessary for both heating and annealing processes to obtain 
single-crystal Cu(111).

Procedure for designing prerotated Cu foils. A commercialized 
two-dimensional-material rotary transfer stage (JOOIN Technology, 2DT-7-
300) was used to realize the rotating and stacking of single-crystal Cu(111) foils. 
The instrument has a rotation resolution of 0.1° and an in-plane displacement 
resolution of 3 μm. Specific operation steps are shown as below. (1) Divide a 
single-crystal Cu(111) foil with a horizontal edge into two pieces and parallelly 
align them on the platform under an optical microscope. (2) Lift the top piece 
of the Cu foil by adhesive polydimethylsiloxane, and rotate the bottom Cu foil 
via the stage with designed angle α. Then, drop the top foil onto the bottom 
one and apply a slight pressure through the polydimethylsiloxane. (3) Fold the 
non-overlapping part of the bottom foil to fix the relative rotation angle, release 
the polydimethylsiloxane away from the top foil and then fold the non-overlapping 
part of the top Cu foil.

CVD growth of TBG. The prestacked smooth single-crystal Cu(111) foils with 
rotation angle α were placed on a quartz plate and loaded into the centre of a 
hot-wall tube furnace, which has a heating area of Φ60 mm × 400 mm (Hefei 
Kejing Materials Technology, OTF-1200X). Then, the system was flushed with Ar 
and heated to 1,050 °C under 500 s.c.c.m. Ar and 10 s.c.c.m. H2. During growth, 
1 s.c.c.m. of 1% CH4 (diluted by Ar) was introduced as the carbon source for 6 h, 
and the furnace was heated to 1,074 °C for 30 min to form the bilayers. After that, 
the system was naturally cooled down to room temperature under 500 s.c.c.m. Ar 
and 10 s.c.c.m. H2.

Equipotential surface etching of Cu. Graphene grown on the external surface of 
Cu foils was removed by air plasma. Then, one side of the Cu/TBG/Cu structure 
was pasted on the TRT, and polymethyl methacrylate (PMMA) was used to seal 
the edges of Cu foils to prevent the occurrence of etching along the edges. The 
sample was placed into 100 ml of 0.1 M Na2S2O8 solution, and paralleled to the two 
Pt electrodes with a constant electric-field intensity of 0.3 V cm–1. The exposed 
side of the Cu foil was uniformly etched under the equipotential electric field. A 
typical three-electrode system was applied to monitor the current change on the 
sample surface during the etching process, which can reflect the resistance change 
(including sample, interface and solution resistance) and indicate the appearance of 
graphene layers. The sample was fixed by the Pt electrode clamp and served as the 
working electrode. A saturated calomel electrode and platinized platinum electrode 
were used as the reference electrode and counter electrode, respectively. The 
constant potential is set as 0.05 V versus saturated calomel electrode.

Transfer of TBG. The obtained TBG was transferred onto SiO2/Si or 
holey-carbon-film TEM grids by the PMMA-assisted method. The graphene film 
was spin coated with PMMA and baked at 120 °C for 3 min. Then, 4% Na2S2O8 
solution was used to etch the Cu away. After rinsing with deionized water, the 
PMMA/graphene film was transferred onto the SiO2/Si or holey-carbon-film TEM 
grids. Subsequently, the PMMA was removed by acetone.

Characterizations of TBG. Optical images were taken by an Olympus BX51M 
microscope. The EBSD characterizations were performed using a PHI 710 
Scanning Auger Nanoprobe instrument, and the IPF and PF maps were obtained 
from the Oxford Aztec software version 3.1. The XRD φ-scan measurements 
were carried out by a PANalytical X’Pert Pro system with a Cu target. The 
typical probing area is 1.2 cm × 0.5 cm. The XRD 2θ-scan measurements were 
conducted using a Bruker D8 Advance system with a Cu target. Raman spectra 
and mappings were collected by the custom-designed optical systems with the 
excitation wavelength of 514 nm. Low-frequency Raman spectra were collected 
by a Horiba HR800 system with the excitation wavelength of 532 nm. HRTEM/

SAED experiments were performed using an FEI Titan Themis G2 300 instrument 
operated at 300 kV, and the size of the selected area aperture during the diffraction 
experiment was chosen to be ~200 nm. The ARPES measurements were performed 
at the nano ARPES beamline BL07U of the Shanghai Synchrotron Radiation 
Facility, China, with a beam spot size of ~500 nm and energy/momentum 
resolution of 50 meV per 0.2°. The data were collected by DA30L analysers at this 
facility. TBG was transferred onto the BN/SiO2/Si substrate and measured in an 
ultrahigh vacuum with a base pressure of more than 5 × 10–11 mbar and photon 
energy of 91 eV.

Photoelectric device fabrication and measurement. The two-terminal devices 
were fabricated through micro-/nanoprocessing. Ti/Au electrodes were evaporated 
by electron-beam lithography on the TBG transferred onto the SiO2/Si substrate. A 
supercontinuum light source (400–1,800 nm) combined with a laser-line-tunable 
optical filter was applied to generate a monochromatic laser beam (spot size, 
~3 μm). The photocurrent was recorded by an electrochemical station when 
the laser was focused on the central region of the sample. During the detection, 
the laser power and applied voltage were kept constant at 80 μW and 0.25 V, 
respectively.

Data availability
 Source data are provided with this paper. All other data that support the findings 
of this study are available within the Article and the Supplementary Information.
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