nature physics

Letter

Tailored Ising superconductivity in intercalated bulk NbSe₂

Received: 5 February 2020

Accepted: 1 September 2022

Published online: 13 October 2022

Check for updates

Haoxiong Zhang¹, Awabaikeli Rousuli¹, Kenan Zhang¹, Laipeng Luo¹, Chenguang Guo¹, Xin Cong², Zuzhang Lin¹, Changhua Bao¹, Hongyun Zhang ¹, Shengnan Xu¹, Runfa Feng¹, Shengchun Shen¹, Kun Zhao¹, Wei Yao ¹, Yang Wu³, Shuaihua Ji^{1,4}, Xi Chen ^{1,4}, Pingheng Tan ², Qi-Kun Xue^{1,4}, Yong Xu ^{1,4}, Wenhui Duan ^{1,4}, Pu Yu ^{1,4} and Shuyun Zhou ^{1,4}

Reducing the dimensionality of layered materials can result in properties distinct from their bulk crystals¹⁻³. However, the emergent properties in atomically thin samples, in particular in metallic monolaver flakes. are often obtained at the expense of other important properties. For example, while Ising superconductivity-where the pairing of electrons with opposite out-of-plane spins from K and K' valleys leads to an in-plane upper critical field exceeding the Pauli limit-does not occur in bulk NbSe₂, it was observed in two-dimensional monolayer flakes⁴. However, the critical temperature was reduced as compared to bulk crystals⁴⁻¹³. Here we take a different route to control the superconducting properties of NbSe₂ by intercalating bulk crystals with cations from ionic liquids. This produces Ising superconductivity with a similar critical temperature to the non-intercalated bulk and is more stable than in a monolayer flake. Our angle-resolved photoemission spectroscopy measurements reveal the effectively two-dimensional electronic structure, and a comparison of the experimental electronic structures between intercalated bulk NbSe₂ and monolayer NbSe₂ film reveals that the intercalant induces electron doping. This suggests ionic liquid cation intercalation is an effective technique for controlling both the dimensionality and the carrier concentration, allowing tailored properties exceeding both bulk crystals and monolayer samples.

In monolayer niobium diselenide (NbSe₂), the non-centrosymmetric crystalline structure together with the spin–orbit interaction locks the spin to the out-of-plane direction, resulting in Ising superconductivity⁴ with an exceedingly high upper critical field of up to 31.5 T. Such Ising superconductivity is intriguing; however, the superconducting critical temperature T_c is reduced from 7.0 K in the bulk crystal to 0.9–3.7 K (below the liquid helium temperature) in monolayer samples^{4,7–13}, and the monolayer metallic sample is unstable at ambient environment^{4,11}. The reduction of T_c with thickness is surprising, since the observation of superconducting gap in the two-dimensional (2D) Nb 4*d* derived bands but not in the three-dimensional (3D) Se p_z derived bands^{14,15} suggests that the superconductivity is mainly contributed by the 2D Nb 4*d* bands. While different scenarios including enhanced Coulomb interaction or thermal fluctuations in two dimensions^{4,7}, changes in the band structure^{8,9} and competition between superconductivity and

¹State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China. ²State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. ³Department of Mechanical Engineering and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, China. ⁴Frontier Science Center for Quantum Information, Beijing, China. ^{Solution} China. ^{Solu}

Fig. 1 | Schematic for tuning the interlayer interaction via ionic intercalation and evidence for successful intercalation of organic cations into NbSe₂ crystal. a, Schematic drawing for tuning the interlayer spacing (*d*) through ionic intercalation. The right panel is a schematic drawing for intercalated imidazole cations $[C_nMIm]^+$ (1-alkyl-3-methylimidazolium), where *n* represents the length of the alkane carbon chain. The green, purple, blue, grey and white atoms represent Se, Nb, N, C and H, respectively. **b**, Current–voltage (*I–V*) curves with IL only (black curve) and IL with NbSe₂ sample at two different temperatures (blue and red curves). A schematic drawing for the experimental

set-up is shown in the inset. The green shared region corresponds to the gating region, while intercalation occurs in the orange shaded region. **c**, XRD data of three intercalated samples with different ILs compared with the unintercalated bulk sample. The error bar for the lattice constant is ± 0.1 Å. [TFSI]⁻ (bis(trifluoromethylsulfonyl)imide) is a commonly IL anion used, and [BF₄]⁻¹ (tetrafluoroborate) is used for comparison. **d**, Raman spectra of intercalated samples with three ILs compared with the unintercalated bulk sample. The vibrational modes of A_{1g} and E_{2g} are shown on the top of this panel.

charge density wave (CDW) $^{\rm 16-18}$ have been proposed, the origin remains elusive.

Instead of reducing the sample thickness, which is widely used to control the dimensionalities of layered materials, an emerging attractive strategy for controlling the interlayer interaction is to expand the interlayer spacing by intercalating ions with large size into the van der Waals gap of the layered crystals, as schematically illustrated in Fig. 1a. Such intercalation provides a convenient pathway for band structure engineering, namely, maintaining the 2D bands while reducing or removing the contribution of 3D bands. Moreover, the intercalated ions can also inject carriers into the bulk crystal, thereby achieving simultaneous control of the dimensionality and carrier concentration. Developing a convenient experimental pathway for ionic intercalation and experimentally evaluating its tunability are both highly desirable. In this Article, using NbSe₂ as a model layered crystal and $[C_2MIm]^+$ $(1-\text{ethyl-}3-\text{methylimidazolium with the chemical formula of } [C_6H_{11}N_2]^+;$ see Supplementary Fig. 1 for the structure and size) as an example for organic ions, we demonstrate the successful intercalation of cations from ionic liquids (ILs) into the van der Waals gap of the layered crystal, resulting in Ising superconductivity with a $T_c = 6.9$ K higher than any monolayer NbSe₂ flake or film reported so far^{4,7-13}. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the role of the intercalated cations in reducing the dimensionality and tuning the carrier concentration.

Although ILs have been widely used for tuning the charge carrier concentration¹⁹⁻²⁴, their application as intercalants for layered crystals has been discovered only recently in Weyl semimetals MoTe2 and $WTe_2(ref.^{25})$ and semiconducting $SnSe_2(ref.^{26})$, leading to enhanced or induced superconductivity in the intercalated organic-inorganic hybrid crystals. Here we apply this method to NbSe₂, where highly improved sample quality can be obtained after optimizing the intercalation conditions, allowing to reveal not only the intriguing phenomena but also the underlying physics from ARPES measurements. Figure 1b shows a schematic drawing of the intercalation process, and the experimental set-up is shown in Supplementary Fig. 2. At low voltages (green shaded region in Fig. 1b), electrons are injected into the interface between NbSe₂ and the ionic liquid similar to previous electrostatic gating experiments¹⁹⁻²⁴, while at a higher voltage and a higher temperature, the electrochemical intercalation becomes favourable (orange shaded region in Fig. 1b). The intercalation process typically starts from the surfaces and the edges of the single-crystal sample (Supplementary Fig. 3), and the full intercalation of a bulk single crystal with a typical thickness of 100 µm can be completed within a few hours using the optimum intercalation conditions in Supplementary Table 1.

The successful intercalation of IL cations into the crystal is confirmed by X-ray diffraction (XRD) and Raman spectroscopy measurements shown in Fig. 1c,d, respectively. After the intercalation, the diffraction peaks from the bulk NbSe₂ with an interlayer spacing of

Fig. 2 | Electronic structure of intercalated NbSe₂ compared with unintercalated bulk sample and monolayer film, showing layer-decoupled electronic structure and electron doping for the intercalated sample. a,b, Comparison of dispersions along the K–Γ–M direction for intercalated (a) and unintercalated bulk (b) NbSe₂ samples. The ARPES intensity is indicated by a linear colour scale, as indicated by the colour bar. c,d, Calculated dispersion of

NbSe₂ with interlayer spacing of 9.9 Å (**c**) and 6.2 Å (**d**) along the K– Γ –M direction. $k_z = 0$ is shown in **c** and varying k_z is shown in **d**, corresponding to monolayer and bulk samples, respectively. The colour scale indicates the variation of calculated k_z from 0 to 0.5. **e**, **f**, Comparison of zoom-in dispersions along the K– Γ –K direction for intercalated NbSe₂ (**e**) and monolayer MBE film (**f**). **g**, **h**, Fermi surface maps for intercalated NbSe₂ (**g**) and monolayer MBE film (**h**).

Fig. 3 | **Tailored Ising superconductivity in the intercalated sample. a**,**b**, Comparison of temperature-dependent sheet resistance of [C₂MIm]⁺intercalated (**a**) and [C₂MIm]⁺-unintercalated bulk (**b**) samples. **c**-**g**, Resistance under different out-of-plane magnetic fields (H_{\perp}) and in-plane magnetic fields (H_{\parallel}) for [C₂MIm]⁺-intercalated (**c**,**e**,**g**) and [C₂MIm]⁺-unintercalated (**d**,**f**) bulk samples. The out-of-plane magnetic fields are 0, 0.5, 1, 1.5, 2, 3, 3.5 and 4 T from the red to the blue curves in **c** and 0, 0.5, 1, 1.5, 2 and 3 T from the red to the blue curves in **d**. The in-plane magnetic fields are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 T from the

red to the purple curves in **e** and **f** and 0, 9, 12, 14, 16, 18, 20, 22 and 25 T from the red to the blue curves in **g**. The data were normalized by the resistance at 8 K (above T_c). **h**, Extracted upper critical magnetic fields H_{c2} for H_{\perp} and H_{\parallel} as a function of temperature. The grey dashed curve is fitted by 2D Ginzburg–Landau equation, and the green dashed curve is fitted using $H_{c2,\parallel}(T) = H_{c2,\parallel}^*(1 - T/T_c)^{1+x}$. H_p is the Bardeen–Cooper–Schrieffer Pauli paramagnetic limit. The error bar from the fitting is smaller than the symbol size.

Fig. 4 | **Sample stability and experimental results on intercalated few-layer flake samples. a**, XRD data of [C₂MIm]⁺-intercalated sample before and after storage under ambient conditions for 16 days. **b**, Resistance measurements of [C₂MIm]⁺-intercalated sample before and after storage under ambient conditions for 12 days. **c,d**, Optical image (**c**) and AFM (**d**) of an exfoliated seven-layer NbSe₂ flake, which is indicated as S2 in **h**. The measured area is indicated by a red box in **c**. The height intensity is indicated by a linear colour scale, as indicated by the colour bar. The topographic line-profile (white curve) is obtained by integrating over the vertical direction of the image and shows a step height of 4.4 nm.

 6.2 ± 0.1 Å disappear, and a new set of diffraction peaks with a larger interlayer spacing is clearly observed, indicating the effective intercalation of ions into the entire bulk crystal. To track which ions are intercalated, we compare three ILs with different cations and anions. respectively. The observation of similar interlayer spacing of 10.1 ± 0.1 Å for ILs containing the same cation (red and blue curves in Fig. 1c), and different interlayer spacings $(10.1 \pm 0.1 \text{ Å versus } 19.7 \pm 0.1 \text{ Å})$ for ILs containing the same anion but different cations (blue and green curves in Fig. 1c), provides definitive evidence that the cations from the ILs are intercalated. This is consistent with the negative polarity of the gating voltage, which drives positively charged cations into the sample. In addition, the absence of fluorine and sulfur peaks in the energy-dispersive X-ray spectroscopy (EDS) measurements using scanning electron microscopy (SEM) confirms that there is negligible intercalation of the anions from the ionic liquids (Supplementary Fig. 4). The successful cation intercalation leads to two distinct changes in the Raman spectra: the suppression of low-energy shear mode at 26.5 cm⁻¹ and a blueshift of the E_{2g} mode. The suppression of the shear mode is consistent with the reduced interlayer interaction similar to that observed in monolayer NbSe₂(ref. 16), and the blueshift of the E_{2g} mode similar to that observed in monolayer NbSe₂(ref.¹⁶) is attributed to reduced interlayer interaction or electron doping²⁷ from the intercalated cations.

Owing to the high quality of the organic–NbSe₂ hybrid crystal, ARPES measurements can be performed to reveal its corresponding electronic structure directly. Figure 2a,b shows a comparison of the electronic structures of a representative intercalated sample with a

e,**f**, Resistance under different in-plane magnetic fields before (**e**) and after (**f**) $[C_2MIm]^+$ intercalation of this seven-layer flake sample. **g**, Extracted upper critical magnetic fields H_{c2} for H_{\parallel} as a function of T_c before and after intercalation. **h**, T_c as a function of n_{2D} (extracted from Hall data measured at 75 K) for flake samples before and after intercalation. The thickness of these four flake samples is ten layers, seven layers, five layers and seven layers from S1 to S4, and they exhibit overall similar trend (see a comparison between red and purple symbols measured at different doping).

[C₂MIm]⁺ cation and unintercalated bulk NbSe₂. In both cases, the bands contributed by Nb 4d states^{9,28,29} cross Fermi level ($E_{\rm F}$), forming hole pockets at the F and K points (pointed by red and orange arrows in Fig. 2a and blue and green arrows in Fig. 3b). In sharp contrast, the highly dispersive 3D bands from the Se p_z state²⁸ at different k_z (out-of-plane momentum) values, which are observed in the unintercalated bulk sample as broad features (pointed by yellow arrow in Fig. 3b) due to the k_z broadening^{30–32}, are absent in the intercalated sample (see also second-derivative images in Supplementary Fig. 5), resulting in a large energy separation between the bottom of the conduction band and the top of the valence band (marked by yellow arrows in Fig. 2a). Such electronic structure is similar to that of monolayer NbSe₂(refs. ^{9,29}) and is also further supported by the first-principles calculations in Fig. 2c,d. The disappearance of the highly dispersive 3D Se p_z bands at the Γ point while maintaining the 2D Nb 4d bands shows that by expanding the interlayer spacing, the intercalated NbSe₂ exhibits effectively 2D electronic structure, although the intercalated sample is a bulk crystal.

To further reveal the difference between the intercalated sample and monolayer NbSe₂, we show in Fig. 2e-h a detailed comparison of the electronic structures of the intercalated sample and monolayer NbSe₂ film grown by molecular beam epitaxy (MBE)¹³. Although the dispersion is overall similar, there is a clear energy shift between these two samples. In particular, the bottom of the conduction band for the intercalated sample is shifted down by 0.14 eV, indicating that the intercalated sample is electron doped compared with the MBE film (see schematic drawings in the inset of Fig. 2g,h). Such electron doping is also confirmed by the Fermi surface maps, in which the intercalated sample shows smaller hole pockets at both the Γ and K points (Fig. 2g). The 2D hole concentrations are calculated to be $7.5\pm0.1\times10^{14}$ cm $^{-2}$ for the intercalated sample and $11.5\pm0.1\times10^{14}$ cm $^{-2}$ for the MBE film from the size of the Fermi pockets based on the Luttinger theorem 33 . The smaller hole concentration confirms that there is electron doping for the intercalated sample. Therefore, the intercalation of cations not only provides an effective control for the interlayer interaction but also leads to substantial electron doping into the NbSe_2 layers.

To investigate the effect of the cation intercalation on the superconductivity, Fig. 3 shows a direct comparison of transport measurements before and after the intercalation. The intercalated sample shows an onset temperature $T_c^{\text{onset}} = 6.9 \text{ K}$ (defined as the 90% resistance of the normal state; Fig. 3a), which is comparable to $T_c^{\text{onset}} = 7.0$ K in the unintercalated bulk sample (Fig. 3b). Application of an out-of-plane magnetic field H_{\perp} strongly suppresses the superconductivity for both samples (Fig. 3c,d); however, the suppression of superconductivity by in-plane magnetic field H_{II} is much less for the intercalated sample (Fig. 3e) compared with the unintercalated bulk sample (Fig. 3f). For example, high-field measurements show that superconductivity persists above 25 T for the intercalated sample (Fig. 3g). Figure 3h shows the extracted upper critical fields as a function of temperature. The extracted in-plane upper critical field $H_{c2,\parallel}^* = 41.9 \pm 1.2$ T is more than three times of the Pauli limit $H_{\rm P} = 12.7$ T, where $H_{\rm P} = 1.84 T_{\rm c0}$ (refs. ^{10,34,35}), where T_{c0} is the temperature where the sample enters zero-resistance state. Taking into account that the intercalated NbSe₂ consists of effectively decoupled NbSe₂ layers with spin-momentum locking similar to monolayer NbSe₂ (ref. ¹⁶), the observation of large upper critical field exceeding the Pauli limit suggests that the intercalated sample exhibits Ising superconductivity similar to monolayer NbSe₂ (ref. ¹⁶) and gated MoS₂ flake^{23,24}.

In addition to achieving a higher T_c than monolayer flake, the intercalated NbSe₂ sample also shows improved stability compared with monolayer NbSe₂. While monolayer NbSe₂ degrades within a few hours 10,11 , the intercalated NbSe $_2$ sample is stable under ambient conditions for more than ten days both in terms of the crystal structure and superconducting properties, as is supported by XRD and transport measurements (Fig. 4a,b). The improved stability is in line with the intercalated black phosphorus³⁶ and intercalated MoTe₂ or WTe₂ (ref.²⁵), where the intercalants protect the active 2D semiconducting/ metallic monolayers and their properties such as superconductivity. In addition, further experiments on few-layer NbSe₂ flakes have shown that the intercalation method also works for few-laver flakes. Figure 4c shows the optical image of an exfoliated NbSe₂ flake, whose thickness is determined to be 4.4 nm (seven layers) by atomic force microscopy (AFM) measurements (Fig. 4d). The intercalated seven-layer NbSe₂ flake shows a $T_c = 6.3 \pm 0.1$ K (Fig. 4f), which is comparable to the bulk NbSe₂. While the change in T_c is negligible (from 6.4 ± 0.1 K to 6.3 ± 0.1 K) as shown in Fig. 4e, f, the intercalated seven-layer NbSe₂ flake shows an enhancement of the in-plane upper critical field (Fig. 4g). This shows that the intercalation method can also be extended to few-layer flakes to enhance the in-plane upper critical field without sacrificing the T_{c} substantially. To further reveal the effect of carrier concentration on the superconductivity, Fig. 4h shows a systematic investigation of T_c and carrier concentration for intercalated few-layer flake samples. While T_c remains almost the same for small electron doping, for high electron doping that corresponds to a smaller hole carrier concentration, T_c decreases substantially. Similar behaviour is also observed for bulk intercalated samples (Supplementary Fig. 6). This suggests that the electron doping from the intercalated cations is not critical for maintaining the high T_c in the intercalated sample and can be even suppressing T_c at high electron doping.

The tailored Ising superconductivity in the bulk intercalated NbSe₂ sample shows superconductivity with an onset temperature $T_c^{\text{onset}} = 6.9$ K, which is higher than the maximum $T_c^{\text{onset}} = 3.7$ K reported in monolayer flakes⁴⁻⁸ and monolayer thin films⁹⁻¹³ (see

Supplementary Table 2 for the summary). A comparison of our intercalated sample with monolaver flake provides some useful insights on the physics of monolayer NbSe₂. The intercalated NbSe₂ sample shows effectively 2D electronic structure similar to monolayer NbSe₂ yet without compromising the T_c , thereby suggesting that the absence of Se-derived bands^{8,9} is unlikely the main reason for the suppression of $T_{\rm c}$ in monolayer NbSe₂. Instead, our work suggests that the depletion of the superconducting density of states near the monolayer superconductor-vacuum interface^{8,37,38} and the competition between superconductivity and CDW are more likely reasons for the suppression of T_c in monolayer NbSe₂. In particular, our intercalated sample shows a lower CDW transition temperature $T_{CDW} \approx 68$ K (Supplementary Fig. 7) compared with monolayer sample, which shares a similar electronic structure with T_{CDW} = 145 K. The observation of a lower T_{CDW} and a higher T_c in the intercalated sample is in agreement with the competition between superconductivity and CDW¹⁶⁻¹⁸ proposed in monolaver NbSe₂.

The interlayer interaction and carrier concentration have been two major controlling knobs for enriching the fundamental physics and intriguing properties of layered materials over the past two decades, and our work identifies intercalation of cations from ionic liquids as an effective route for simultaneous control of these two important parameters. The intercalation method is quite generic and can be readily extended to a large group of layered materials (for example, MoTe₂ and WTe₂(ref.²⁵), TaSe₂, TaS₂, SnSe₂(ref.²⁶), graphite and so on) with a wide variety of ILs with different cations (for example, $[C_nMIm]^{\dagger}$ (1-alkyl-3-methyl-imidazolium, n represents the length of the alkane carbon chain), [DEMB]⁺ (N,N-diethyl-N-butyl-N-methylammonium), [DEME]⁺ (N,N-diethyl-N-(2-methoxyethyl)-N-methyl- ammonium) and [C_nMMIm]⁺(1-alkyl-2,3-dimethyl-imidazolium, n represents the lengthof the alkane carbon chain); see Supplementary Figs. 8-10 and Supplementary Table 1). Therefore, our work provides an important methodology for creating hybrid materials with tunable functionalities possibly exceeding the bulk crystals and monolayer samples.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information, details of author contributions and competing interests, and statements of data and code availability are available at https://doi.org/10.1038/s41567-022-01778-7.

References

- Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* 7, 699–712 (2012).
- 2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. *Nat. Chem.* **5**, 263–275 (2013).
- Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. *Nat. Rev. Mater.* 2, 17033 (2017).
- 4. Xi, X. et al. Ising pairing in superconducting NbSe₂ atomic layers. *Nat. Phys.* **12**, 139–143 (2016).
- 5. Frindt, R. Superconductivity in ultrathin NbSe₂ layers. *Phys. Rev. Lett.* **28**, 299–301 (1972).
- 6. Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe₂. *Phys. Rev. B* **80**, 184505 (2009).
- 7. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. *Nano Lett.* **15**, 4914–4921 (2015).
- Khestanova, E. et al. Unusual suppression of the superconducting energy gap and critical temperature in atomically thin NbSe₂. Nano Lett. **18**, 2623–2629 (2018).

- 9. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe₂. *Nat. Phys.* **12**, 92–97 (2015).
- Xing, Y. et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe₂. Nano Lett. **17**, 6802–6807 (2017).
- Wang, H. et al. High-quality monolayer superconductor NbSe₂ grown by chemical vapour deposition. *Nat. Commun.* 8, 394 (2017).
- Nakata, Y. et al. Anisotropic band splitting in monolayer NbSe₂: implications for superconductivity and charge density wave. *npj 2D Mater. Appl.* 2, 12 (2018).
- Zhao, K. et al. Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. *Nat. Phys.* 15, 904–910 (2019).
- Yokoya, T. et al. Fermi surface sheet-dependent superconductivity in 2H-NbSe₂. Science **294**, 2518–2520 (2001).
- Rahn, D. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe₂ from angle-resolved photoemission at 1 K. *Phys. Rev. B* 85, 224532 (2012).
- Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe₂. Nat. Nanotechnol. **10**, 765–769 (2015).
- Chu, C. W., Diatschenko, V., Huang, C. Y. & DiSalvo, F. J. Pressure effect on the charge-density-wave formation in 2H-NbSe₂ and correlation between structural instabilities and superconductivity in unstable solids. *Phys. Rev. B* **15**, 1340–1342 (1977).
- Lian, C.-S., Chen, S. & Duan, W. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe₂. *Nano Lett.* 18, 2924–2929 (2018).
- Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).
- 20. Ueno, K. et al. Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. *Nat. Nanotechnol.* **6**, 408–412 (2011).
- 21. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. *Science* **338**, 1193–1196 (2012).
- 22. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. *Science* **332**, 1065–1067 (2011).
- Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS₂. Nat. Phys. **12**, 144–149 (2016).
- Lu, J. et al. Evidence for two-dimensional Ising superconductivity in gated MoS₂. Science **350**, 1353–1357 (2015).
- Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

- 26. Rousuli, A. et al. Induced anisotropic superconductivity in ionic liquid cation intercalated 1T-SnSe₂. 2D Mater. **8**, 015024 (2020).
- Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. *Nat. Nanotechnol.* 3, 210–215 (2008).
- Johannes, M., Mazin, I. & Howells, C. Fermi-surface nesting and the origin of the charge-density wave in NbSe₂. *Phys. Rev. B* 73, 205102 (2006).
- 29. Calandra, M., Mazin, I. I. & Mauri, F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe₂. *Phys. Rev. B* **80**, 308–310 (2009).
- Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. *Rev. Mod. Phys.* 93, 025006 (2021).
- Kirchner, S. et al. Colloquium: Heavy-electron quantum criticality and single-particle spectroscopy. *Rev. Mod. Phys.* 92, 011002 (2020).
- 32. Zhang, H. et al. Angle-resolved photoemission spectroscopy. *Nat. Rev. Methods Primers* **2**, 54 (2022).
- Luttinger, J. Fermi surface and some simple equilibrium properties of a system of interacting fermions. *Phys. Rev.* 119, 1153–1163 (1960).
- Chandrasekhar, B. A note on the maximum critical field of high-field superconductors. *Appl. Phys. Lett.* 1, 7–8 (1962).
- 35. Clogston, A. M. Upper limit for the critical field in hard superconductors. *Phys. Rev. Lett.* **9**, 266–267 (1962).
- 36. Wang, C. et al. Monolayer atomic crystal molecular superlattices. *Nature* **555**, 231–236 (2018).
- 37. Simonin, J. Surface term in the superconductive Ginzburg– Landau free energy: application to thin films. *Phys. Rev. B* **33**, 7830–7832 (1986).
- 38. de Gennes, P. G. Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

 \circledast The Author(s), under exclusive licence to Springer Nature Limited 2022

Letter

Letter

Methods

Sample growth

High-quality NbSe₂ single crystals were synthesized by the I₂ chemical vapour transport method. Polycrystalline NbSe₂ were synthesized by heating the high-purity stoichiometric mixture of Nb powder (99.99%, Alfa Aesar) and Se ingot (99.99%, Alfa Aesar) at 800 °C in a vacuum-sealed silica ampoule for several days. Using a chemical vapour transport method with I₂ as transfer agent, polycrystalline NbSe₂ were transferred from a high-temperature (820 °C) area to a low-temperature (750 °C) area to achieve recrystallization. High-quality NbSe₂ single crystals were obtained after several days. Monolayer NbSe₂ film was grown under a Se-rich condition and monitored by in situ reflection high-energy electron diffraction¹³.

Bulk sample intercalation

The intercalation of ionic liquid cations is achieved through electrochemical reaction with a simple lab-design intercalation device as shown in Fig. 1b. High-quality NbSe₂ single-crystal sample acts as the working electrode, which is immersed in the ionic liquid electrolyte, and Pt is used as the counter electrode. Applying a negative voltage with the electrochemical workstation can drive organic cations into NbSe₂ layers. And an appropriate heating temperature could remarkably increase the intercalation efficiency. A globally intercalated bulk with typical thickness of 100 μ m can be obtained within a few hours.

X-ray diffraction

The XRD patterns are collected from a diffractometer using Cu K_{α} ($\lambda = 1.5418$ Å) radiation to reveal the interlayer spacings of the samples. The samples are mounted in reflection geometry with the *Q*-vector (scattering vector) along the out-of-plane direction.

ARPES measurements

ARPES measurements were performed in our home laboratory at Tsinghua with a helium discharge lamp. The samples were oriented by Laue before loaded into the ARPES chamber, and the freshly cleaved surface was measured at 80 K under an ultrahigh vacuum better than 1×10^{-10} torr. The data were recorded by a Scienta DA30-L with a photon energy of 21.2 eV.

Device fabrication

Few-layer NbSe₂ flakes are fabricated in a glovebox ($H_2O < 0.1$ ppm, $O_2 < 0.1$ ppm) from unintercalated single crystal on polydimethylsiloxane stamps and transferred to pre-patterned Ti/Au (5 nm/30 nm) Hall bar on Si/SiO₂ substrate. Hexagonal boron nitride thin flakes are fabricated and transferred in the same strategy. The thickness of NbSe₂ and hexagonal boron nitride flakes are confirmed by AFM measurements.

Transport measurements

Transport measurements were performed in a Physical Property Measurement System (PPMS, Quantum Design) with the lowest temperature of 1.6 K and magnetic field up to 9 T. The longitudinal resistances were measured through a four-probe method, and a small excitation current (50 μ A) was employed to avoid sample heating. The high-magnetic-field transport measurements were performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS.

Theoretical calculation

First-principles calculations were performed in the framework of density functional theory as implemented in the Vienna ab initio Simulation Package (VASP)³⁹. The projector augmented wave method and the Perdew–Burke–Ernzerhof-type exchange correlation functional⁴⁰ and the plane-wave basis with an energy cut-off of 400 eV were used. Van der Waals corrections were included by the zero damping DFT-D3 method⁴¹. The spin–orbit coupling was included in self-consistent electronic structure calculations. A 16 × 16 × 14 *k*-point mesh grid was

Data availability

Source data are available with this paper. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- 39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **6**, 15–50 (2019).
- 40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. *J. Phys. Chem. Lett.* 132, 154104 (2010).

Acknowledgements

The work is mainly supported by the Ministry of Science and Technology of China (Grant Nos. 2020YFA0308800, 2021YFA1400100, 2016YFA0301004) and National Natural Science Foundation of China (Grant No. 11725418). Y.W. is supported by the Fundamental Research Funds for the Central Universities (buctrc202212) and National Natural Science Foundation of China (Grant Nos. 21975140, 51991343). Y.X. is supported by the National Natural Science Foundation of China (Grant Nos. 12025405, 11874035) and the Ministry of Science and Technology of China (Grant Nos. 2018YFA0307100, 2018YFA0305603). S.J. and P.Y. are supported by the Ministry of Science and Technology of China (Grant No. 2021YFE0107900). P.Y. is also supported by the NSFC (Grant Nos. 52025024 and 51872155) and the Beijing Nature Science Foundation (Grant No. Z200007). Y.X., W.D. and P.Y. are supported by the Basic Science Center Program of NSFC (Grant No. 51788104).

Author contributions

S.Z. and P.Y. conceived the research project. Haoxiong Zhang, A.R., C.G., L.L., R.F. and Y.W. grew, intercalated and characterized the samples. A.R., Haoxiong Zhang, Kenan Zhang, C.B., Hongyun Zhang and W.Y. performed the ARPES measurements and analysed the ARPES data. Haoxiong Zhang, S.S. and P.Y. performed the transport measurements. Kun Zhao., S.J., Xi Chen and Q.-K.X. grew the monolayer NbSe₂ MBE film for ARPES measurements. Haoxiong Zhang, Xin Cong and P.T. performed the Raman measurements and analysed the Raman data. Z.L., S.X., Y.X. and W.D. performed the first-principles calculations. Haoxiong Zhang, P.Y. and S.Z. wrote the manuscript, and all authors commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41567-022-01778-7.

Correspondence and requests for materials should be addressed to Shuyun Zhou.

Peer review information *Nature Physics* thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.