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ABSTRACT
Two-dimensional (2D) indium selenide (InSe) has been widely studied for application in transistors and
photodetectors, which benefit from its excellent optoelectronic properties. Among the three specific
polytypes (γ -, ε- and β-phase) of InSe, only the crystal lattice of InSe in β-phase (β-InSe) belongs to a
non-symmetry point group of D4

6h , which indicates stronger anisotropic transport behavior and potential in
the polarized photodetection of β-InSe-based optoelectronic devices.Therefore, we prepare the stable
p-type 2D-layered β-InSe via temperature gradient method.The anisotropic Raman, transport and
photoresponse properties of β-InSe have been experimentally and theoretically proven, showing that the
β-InSe-based device has a ratio of 3.76 for the maximum to minimum dark current at two orthogonal
orientations and a high photocurrent anisotropic ratio of 0.70 at 1 V bias voltage, respectively.The
appealing anisotropic properties demonstrated in this work clearly identify β-InSe as a competitive
candidate for filter-free polarization-sensitive photodetectors.

Keywords: 2Dmaterials, polarization, photodetectors, β-InSe, Raman spectra

INTRODUCTION
With regard to extracting the polarization infor-
mation of incident light, polarization-sensitive
photodetectors (PSPDs) exhibit significant practi-
cal application in both military and civil areas, like
bio-imaging [1], remote sensing [2], night vision
[3] and helmet-mounted sight for fighter planes
[4]. Optical filters combined with polarizers are
usually needed for traditional photodetectors to
realize polarized light detection. But this increases
the size and complexity of devices [5]. To obtain
a small-sized PSPD, one-dimensional (1D) nano-
materials with geometrical anisotropy, such as
nanowires, nanoribbons and nanotubes [6,7], have
been used as sensitive materials for PSPDs, which
can directly identify the polarization information
of incident light without any optical filters and
polarizers. However, it is not an easy task to pattern

and integrate these 1D nanochannels for mass
production of PSPDs [3,8–10].

Atomically layered two-dimensional (2D) semi-
conductors with low crystal symmetry have shown
great potential in micro-nano PSPDs recently due
to their intrinsically in-plane anisotropic proper-
ties [11,12]. For example, SnS, ReS2, GeS2, GeAs2,
AsP and black phosphorus (BP) exhibit an obvi-
ous in-plane anisotropy behavior in carrier trans-
port, thermal conductivity, electrical conductivity,
thermoelectric transport andoptical absorption pro-
cesses. They have potential application in PSPDs,
polarization ultrafast lasers, polarization field ef-
fect transistors and polarization sensors [9–15].
Among them, BP-based PSPDs have the highest
photocurrent anisotropy ratio of 0.59 [16], bene-
fitting from its high carrier mobility and the strong
in-plane anisotropy coming from the low-symmetry
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puckered honeycomb crystal structure [17,18]. But
withBP-basedoptoelectronic devices it is hard to get
rid of the ambient degradation problem [19,20]. 2D
layered indium selenide (InSe), which also has high
carrier mobility and is more stable than BP in an at-
mospheric environment [21], exhibits huge poten-
tial for application in high-performance optoelec-
tronic and electronic devices [22–27]. In addition,
the anisotropic optical and electronic properties of
2D layered InSe have already been demonstrated
in 2019 [28,29]. It is worth noting that InSe crys-
tal has three specific polytypes, which are in β , γ
and ε phases, respectively [30]. Among them, InSe
in γ -phase and ε-phase belongs to the C 5

3V and
D1

3h symmetry groups respectively. Only the InSe in
β-phase (β-InSe) belongs to the non-symmetry
point group of D4

6h , indicating that β-InSe exhibits
better anisotropicoptoelectronicproperties than the
other two polytypes.

In thiswork, p-typeβ-InSe single crystals are suc-
cessfully prepared by controlling the composition
via temperature gradient method. The morphology,
structure and stability of the β-InSe flake are
systematically investigated and characterized. The
anisotropic nature of β-InSe has been unveiled
by angle-resolved polarized Raman spectroscopy.
Then experiments and theoretical calculations are

carried out to explore the optical and electrical
anisotropy of β-InSe. Finally, the polarization-
sensitive photoresponse of photodetectors based on
the β-InSe is demonstrated. The results reveal that
a high photocurrent anisotropy ratio among single
2D-material-based PSPDs of 0.70 could be obtained
from the β-InSe-based PSPDs, indicating its great
potential in high-performance micro-nano PSPDs.

RESULTS
The single crystal of β-InSe in this work is grown
via a temperature gradient method (see the Meth-
ods section), which has a hexagonal crystal struc-
ture stacked in AB order belonging to the non-
symmetric D4

6h space group as shown in Fig. 1a.
The morphology of the InSe samples is investigated
by scanning electron microscopy (SEM) (Fig. 1b
and c) and the cross section of the samples reveals
the obvious layered structure of InSe. According
to the results of the energy-dispersive x-ray spec-
troscopy (EDS), shown in Fig. S1 in the online
supplementary file, the atomic ratio of indium to
selenium is closed to 1 : 1 as designed, with a lit-
tle excess of selenium. A photo of InSe bulk and
the corresponding X-ray diffraction (XRD) pattern
are shown in Fig. S2, where the diffraction peaks
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Figure 1. Structure and characterization of the few-layer β-InSe flake. (a) Front and top views of the hexagonal structure of
the β-InSe crystal. (b and c) The SEM images of the same β-InSe flake with different magnification, revealing the layered
structure of the β-InSe flake. (d) Raman spectra of β-InSe under 514, 532 and 633 nm laser excitations. (e) Polar plot of the
angle-resolved polarized Raman intensity of A

′
1(�

3
1 ) vibrational modes of β-InSe under 514 and 633 nm excitations.
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are in agreement with the standard crystal data of
β-phase InSe (JCPDSNo. 34-1431).The lattice pa-
rameters have been calculated to be a = 4.001 Å
and c = 16.618 Å based on the XRD measurement.
Figure 1d shows the unpolarized Raman spec-
tra of the β-InSe flake on a silicon (Si) wafer,
which has been calibrated by standard Si peak at
520.7 cm–1. Three typical InSe Raman peaks at 115,
176 and 227 cm–1 corresponding to the out-of-
planeA′

1(�
2
1), in-planeE

′(�1
3) − TO&E′′(�3

3) and
out-of-plane A′

1(�
3
1) vibrational modes of InSe can

all be observed under 514, 532 and 633 nm exci-
tations. One resonance Raman peak at 199 cm–1

corresponding to the out-of-plane A′′
2(�

1
1)-LO vi-

brational mode can be observed under 514 nm
(2.41 eV) excitation [31]. Figure 1e shows the
polar plot of the angle-resolved polarized Raman
intensity of the A′

1(�
3
1) vibrational mode. The

intensity of A′
1(�

3
1) vibrational mode changes peri-

odically with the polarization angle of the excitation,
indicating a strong optical anisotropy ofβ-InSe.The
same tendency of the polarizedRaman spectra could
be observed under resonance excitation (514 nm,
Fig. S3) and non-resonance excitation (633 nm,
Fig. S4). The angle-resolved polarized Raman spec-
tra of β-InSe can be understood by the classical
Raman selection rules and the crystal structure
[10,32]. As shown in Fig. S5, when the thickness of
the β-InSe sheet decreases, the anisotropic ratio of
the A′

1(�
3
1) mode increases, which indicates that a

thin layer possesses relatively high anisotropic Ra-
man properties. The Raman spectroscopy of β-InSe
has demonstrated a high in-plane optical anisotropy,
indicating a great opportunity to exploit β-InSe-
based PSPDs.

The back-gated structure of the β-InSe-based
field effect transistor (FET) is shown in the in-
set of Fig. 2a. The thickness of the β-InSe flake is
∼8 nm (Fig. S6), determined by atom force mi-
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Figure 2. Electrical characterization of a few-layer β-InSe FET on a SiO2/Si substrate.
(a and b) Output transfer curves obtained from an 8-nm-thick device on a silicon sub-
strate with 300 nm SiO2 at room temperature and in the air. The inset of (a) is the
schematic structure of a few-layer β-InSe FET. For the transfer curves in (b), the drain-
source voltage is 1 V. The channel length and width of the device are 5 μm and 5 μm,
respectively.

croscopy (AFM). The gate tunable output charac-
teristics (Ids − Vds) (Fig. 2a) of the β-InSe-based
FET show that the source-drain current Ids increases
at the same bias (Vds) when gate voltage (Vg) varies
from+60V to−60V.As shown inFig. 2b, the trans-
fer characteristics (Ids − Vg) at Vds = 1 V of the
FET exhibit a p-type dominated ambipolar conduc-
tion behavior with an on/off current modulation of
105, which is one order larger than the requirement
(104) for complementary metal oxide semiconduc-
tor (CMOS) logic devices [14].The p-type conduc-
tion behavior is attributed to the existence of indium
vacancies during the crystal growth. The atomic ra-
tio of In to Se is ∼44 : 56 according to the results
of EDS spectra in Fig. S1b and the as-generated
indium vacancies can serve as acceptor dopants
[33,34].The calculated field effect electronmobility
is∼11.16 cm2 V–1 s–1 at room temperature in ambi-
ent air.This relatively lowmobilitymight result from
the scattering effect of air and SiO2 substrate [14].
In addition, the β-InSe flakes and their FET exhibit
good stability in air due to its specific ABAB stack-
ing mode (as shown in Fig. S7), and there is almost
no change on the morphology (Fig. S8) and Raman
spectra (Fig. S9) of the β-InSe flake as well as the
Ids − Vg curves of β-InSe FET (Fig. S10a) after be-
ing exposed in the air for 10 days. Besides, Ids − Vds
curves change little after being tested 13 times with a
1-minute interval (Fig. S10b), indicating a good
operation stability.

For the photoresponse performance, as shown
in Fig. 3a and b, Ids and the photocurrent (Iph) at
Vg = 0 V of the β-InSe-based FET increase as the
power intensity (Pin) of the laser beam is enlarged
(l = 800 nm) and reaches saturation when Pin is
higher than 255.0 mW cm–2. As the Pin dependent
responsivity results show in Fig. 3c, the responsivity
reaches the highest value of 194 AW–1 at the inten-
sity of 2.2 mW cm–2 and 1 V bias. It is noteworthy
that the responsivity is inversely proportional to
the Pin of the laser beam, which results from the
trap-related photogating effect reported previously
[22,35,36].The specific detectivity (D∗) reaches the
highest value of 1.45 × 1012 Jones at the intensity
of 2.2 mW cm–2 and 1 V bias. The deduction can
be indirectly proven by the Pin dependence of Iph
at different bias in Fig. 3b, which satisfies the power
law relation of Iph ∝ Pα

in. The simulated index of
power law α are ∼0.26 (at Vds = 1 V), ∼0.26 (at
Vds = 2 V) and ∼0.28 (at Vds = 3 V), which are all
much lower than 1, indicating a strong trap-related
carrier recombination in the β-InSe-based FET
[37]. For the dynamic photoresponse of the device,
Ids can be reproducibly switched from the ‘on’ state
to the ‘off’ state with the rise time of ∼620 μs and
the decay time of ∼540 μs, which indicates good
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Figure 3. Photodetection performance of a few-layer β-InSe photodetector
(L = 10 μm, W = 10 μm). (a) Output curves of a few-layer β-InSe photodetector
in dark and under illumination with different excitation intensities at l = 800 nm,
Vg = 0 V. (b) Power-dependent photocurrent of the layer β-InSe photodetector at
Vds = 1 V, Vds = 2 V and Vds = 3 V, respectively. (c) Responsivity and specific de-
tectivity as a function of illumination intensity at l = 800 nm, Vds = 1 V, Vg = 0 V.
(d) A test of the photoswitching stability for the β-InSe device acquired at l = 800 nm
and P = 42 mW cm–2, Vds = 1 V, Vg = 0 V, showing that the rise time is ∼22 ms and
the decay time is ∼24 ms.
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Figure 4.Anisotropic transport properties of few-layerβ-InSe. (a) Angular dependence
of the source-drain current of the device at Vds = 0.5 V and Vds = 1 V, respectively.
The inset of (a) is the structure of the device for the angle-dependent transport behavior
determination. (b) The DFT calculated dark current versus bias voltages along the zigzag
and armchair directions. The top-left inset is the top view of the β-InSe structure, and
the bottom-right inset is the dark current along the armchair direction.

reproducibility of the device, as shown in Fig. 3d
and Fig. S11. The relatively slow response time may
be improved by using graphene electrodes that have
been proven in recent reports [38–44].

DISCUSSION
The β-InSe-based FET with eight electrodes (inset
of Fig. 4a) has been fabricated to determine the
angle-dependent transport behavior of β-InSe. The

thickness of the β-InSe flake is measured to be
6.8 nm by AFM (Fig. S12). As shown in Fig. 4a,
the angle-dependent dark current of device has the
ratios of 4.62 (Vds = 0.5 V) and 3.76 (Vds = 1 V)
for the maximum to minimum dark current at two
orthogonal orientations. It suggests the obvious
in-plane anisotropic conduction of β-InSe. Quan-
tum transport calculation based on non-equilibrium
Green’s function density functional theory (NEGF-
DFT) calculation has been carried out to determine
the origin of the distinct anisotropic conduction
behavior of β-InSe. As shown in Fig. S13, the
supercell of the β-InSe hexagonal lattice has two
perpendicular directions, armchair and zigzag.
Due to the electrostatic potential profile difference
between two directions, and the fact that the lattice
energy-barrier scattering to Bloch waves along the
armchair direction is more significant (Fig. S14),
a large anisotropy of dark current can be predicted
(Fig. 4b); the dark current along the zigzag direction
might be theoretically two orders greater than that
along the armchair direction.

Then the configuration in Fig. 5a is set up
for testing the polarization sensitivity of β-InSe
FET. As shown in Fig. 5b, the photocurrents
dependent on the polarization angle demon-
strate a shape of cosθ function in a period of π .
In addition, the measured ratio of maximum to
minimum photocurrent is ∼5.66 at Vds = 1 V.
As a result, the photocurrent anisotropy ratio
of our β-InSe devices is ∼0.70 according to the
formula (Iphmax − Iphmin)/(Iphmax + Iphmin), which
is ranking high among the single 2D-material-
based PSPDs as shown in Table 1, except for one
Te-nanosheet-based polarized infrared imaging
system, which has an anisotropy ratio of 0.8 for
2.3 μm light [45]. The photocurrent changing with
the polarized angle θ of incident light at 800 nm
(1.55 eV) along the armchair direction has also been
simulated by DFT. From the band structure of the
β-InSe (Fig. S15), an indirect bandgap ∼1.2 eV is
observed. Figure 5c illustrates the orbital isosurface
contributing to the photocurrent. Arrows indicate
the light polarization angle θ , which is with respect
to x axis along the armchair direction. The electron
cloud isosurface shows that the main contribution is
along the Se 4py direction.The transition possibility
increases when the polarization direction parallels
with the orbital dipoles. Hence, as shown in Fig. 5d,
when θ = 0◦ and 180◦, light polarization is perpen-
dicular to the Se 4py and the photocurrent reaches
the minimum. When θ = 90◦, light polarization is
in line with Se 4py and the photocurrent reaches the
maximum. A 0.67 anisotropic ratio of the photore-
sponse can be extracted from the theoretical calcu-
lation, which is a little smaller than the experimental
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Figure 5. Polarization-sensitive photoresponse of the β-InSe FET. (a) The configuration
for angle-dependent transport behavior determination. (b) Angular dependence of the
photocurrent of the device at Vds = 0.5 V and Vds = 1 V, respectively. (c) Top view and
side view of the contributing orbital to the photocurrent. Red arrow indicates the light
polarization angle θ . (d) The quantum transport calculation of the photocurrent with
different polarized angle θ for ±0.5 V and ±1.0 V bias voltages, when the light of the
wavelength of 800 nm is irradiated.

Table 1. Anisotropic performance comparison of photode-
tectors made with different materials.

PSPDs Bias (V)
Wavelength

(nm)
Anisotropic

ratio

ReS2 [9] 1 532 0.54
SnS-SnSxSe(1−x) [13] 7 532 0.082
ReSe2 [14] 1 633 0.50
GeSe [3] 2 808 0.36
GeAs2 [15] 1 532 0.33
GeS2 [10] 10 325 0.35
GeSe/MoS2 [1] 0 532 0.35
BP [16] 0.15 1550 0.59
Te [45] 1 2300 0.8
BP/InSe [8] 0 633 0.83
BP onWSe2 [46] 0.5 1550 0.71
TiS3/Si [47] −0.5/0 660 0.29/0.44
Bi2Te3 [48] 1 635 0.23
Bi2Te3/CuPc [49] 0.01 650 0.44
InSe (this work) 1 800 0.70

one, 0.70.The reason for this smaller calculated one
is that we did not take other electrons into account
for the anisotropic photoresponse besides the Se
4py. Both the experimental and theoretical results
demonstrate a significant in-plane anisotropic
photoresponse of β-InSe that is crucial for the

realization of filter-free micro-nano PSPDs. As
shown in Fig. S16, when the thickness of the
β-InSe sheet decreases, the anisotropic ratio of the
photoresponse performance will increase, which is
in accordance with the layer-dependent anisotropic
Raman result.

CONCLUSION
In summary, a p-type β-InSe single crystal is
successfully prepared via temperature gradient
method, which can be exfoliated into 2D layered
flakes by tape-assisted mechanical exfoliation.
The anisotropic nature of the β-InSe has been
revealed by angle-resolved Raman.The out-of-plane
vibrational modes exhibit pronounced periodic
variations with the polarization angle of the exci-
tations. Besides, a good stability of β-InSe flakes
and their FET devices has been proven by AFM
measurement and multi-repeat electrical perfor-
mance test. The theoretical calculations are in
good agreement with the experimental results in
that there is strong anisotropic transport and a
polarization-sensitive photoresponse in 2D layered
β-InSe flakes. The photocurrent anisotropic ratio
of the β-InSe photodetector reaches 0.70, which is
ranking high among the single 2D-material-based
PSPDs. The strong anisotropic Raman, transport
and photoresponse properties of the β-InSe enable
its great application potential in filter-free PSPDs.

METHODS
Preparation of β-InSe single crystal
A temperature gradient method has been used for
β-InSe single crystal synthesis. A mixture of In and
Se powders at a molar ratio 1 : 1 was placed in
double-wall cleanedquartz ampoule down to a resid-
ual pressure of ∼10–4 Torr. The ampoules were
kept in a vertical electrical furnace. Then the am-
poules were slowly heated to 723 K at a rate of
20 K-1h to let indium and selenium react. After the
reaction, the ampoules were heated to 1023 K at a
rate of 10 K-1h and maintained at this temperature
for 16h to insure a complete reaction throughout the
whole specimen. They were cooled down to 723 K
slowly at a rate of 1 K-1h and finally cooled down
at a rate of 20 K-1h to room temperature.The single
crystal obtained was 25 mm in length and 13 mm in
diameter. Increasing the soaking time to give enough
time for a complete reaction between raw materials
may be one way to improve the quality of the sam-
ple. And the rate of cool down of the furnace could
be optimized, for example, 0.5 K-1h instead of 1 K-
1h.
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Device fabrication and measurement
Polarized Raman spectra have been obtained by
a Jobin Yvon/HORIBA LabRam ARAMIS Raman
spectrometer with 514, 633 and 785 nm lasers,
where the polarization of the laser has been tuned
by a Spectra-Physics automatic polarizer. The β-
InSe FETs were fabricated according to the follow-
ing steps.The few-layer β-InSe flakes were obtained
by typical scotch tape assisted mechanical exfolia-
tion of bulk β-InSe and transferred to a Si/SiO2
(300 nm) wafer by using a polydimethylsilox-
ane (PDMS) thin film. Then methyl methacrylate
(MMA) and polymethyl methacrylate (PMMA)
have been spin-coated on the surface of the Si/SiO2
wafer step-by-step. After that, electron-beam lithog-
raphy (Raith Pioneer Two) and electron-beam
evaporation were carried out to pattern the micro-
scale Cr/Au (5 nm/50 nm) electrodes on β-InSe
flakes. Following a lift-offprocess,β-InSeFETswere
obtained. The β-InSe FETs were evaluated on a
home-built probe stationwith aKeithley 4200 Semi-
conductor Parameter Analyzer, which is open to the
air. The laser used for the photoconductivity mea-
surements was generated from a coherent femtosec-
ond laser.

Calculation method
We use a method based on NEGF-DFT to calculate
the linear polarized photocurrent of β-InSe. β-InSe
bulk structure belongs to P63/mmc space group. To
calculate the photocurrent flow through β-InSe un-
der linearly polarized light, we construct a two-probe
device model for the armchair and zigzag direc-
tions. Generalized gradient approximation (GGA)
expressed by the Perdew-Burke-Ernzerhof (PBE) is
used todescribe the exchange correlation functional.
The maximum force acting on each atom becomes
smaller than 0.03 eV/Å.The energy is optimized un-
til it changes less than 10–5 eV/atom per step. The
criteria for stress and displacement convergence are
0.05 GPa and 0.001 Å, respectively.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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Figure S1. EDS test of the β-InSe sheet. (a) EDS spectra and (b) data of the β-InSe 

sheet for the scanned area of the green box in the inset, showing the atomic ratio of In 

atomic and Se atomic of the β-InSe sheet is almost 1:1. 

 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES, Agilent 7700x) 

has used to obtain a more accurate atomic ratio of In to Se. The mass percentage 

results of the dissolved β-InSe sample output by the ICP-AES measurement are In 

560.839 ppb for In and 410.602 ppb for Se, which means the real atomic ratio of In to 

Se is 48.35:51.65. 

  



 

Figure S2. (a) Photo and (b,c) XRD result of InSe sample, which demonstrate the 

material is β-InSe. 

  



 

Figure S3. Polarized Raman spectra of the β-InSe sheet with different polarization 

angle under 514 nm excitation. 

  



 

Figure S4. Polarized Raman spectra of the β-InSe sheet with different polarization 

angle under 633 nm excitation. 

  



 

 

Figure S5. Optical images and thickness-dependent polarization-Raman spectra of 

three β-InSe nanosheets with different thickness: thin one (a, d), middle one (b, e), 

and thick one (c, f). 

  



 

Figure S6. The optical (inset) and AFM images of the few-layer β-InSe sheet for FET 

fabrication. 

  



 

Figure S7. Unit cell of InSe phases: (a) -InSe, (b) -InSe and (c) -InSe. 

  



 

Figure S8. Morphology of few-layer β-InSe sheets at different time in the air. AFM 

images of a few-layer β-InSe sheet (~ 4.1 nm, ~ 11.3 nm, and ~ 21.5 nm) exposed to 

air for (a) 0 day, (b) 2 days, (c) 4 days, (d) 6 days, (e) 8 days (f) 10 days, revealling 

the robust stability of the few-layer β-InSe sheet with different thickness.  

  



 

Figure S9. Raman spectra of few-layer β-InSe sheet at different time in the air. 

  



 

Figure S10. Stability of electrical characterization of a few-layer β-InSe FET. (a) 

Current to gate voltage curve obtained from a β-InSe FET device after air exposure 

for 0-10 day for comparison at Vds = 1 V. (b) Current to drain-source voltage curve 

obtained from a β-InSe FET device at thirteen times with 1-minute interval. Inset: 

Current to test number curve at Vds = 1 V, Vds = 2 V and Vds = 3 V, respectively. 

  



 

Figure S11. Response time of the device under 808 nm light illumination during one 

cycle. 

  



The calculation process of the performance parameters of the photodetector 

 

The responsivity (R) can be calculated by the formula:  

R =Iph / (Pin A)  

where Iph is the photocurrent, Pin is the laser power density, A is area of the 

photodetector channel.  

The specific detectivity (D*) can be calculated by the approximate calculation 

formula:  

D* =R A1/2 / (2e Idark )
1/2  

where e is the electron charge, and Idark is the dark current [1]. 

 

Reference 

[1] Wu F. et al. AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh 

Reverse Rectification Ratio and High Photosensitivity. Adv Funct Mater 2019; 29: 

1900314. 



 

Figure S12. Morphology of the β-InSe based device for determining the 

angle-dependent transport behavior and the thickness of β-InSe flake is ∼6.8 nm 

according to the profile. 

  



Principle investigation of strong anisotropy of photo-response in β-InSe via 

density functional theory 

 

(1) Construction of structure 

β-InSe bulk structure belongs to P63/mmc space group. The optimized bulk β-InSe has 

lattice constants a1 = a2 = 4.113 Å. As shown in the Figure 1aa, the supercell of 

β-InSe hexagonal lattice has two perpendicular directions, armchair and zigzag. To 

calculate the photocurrent flow through β-InSe under linearly polarized light, we 

construct a two-probe device model for the armchair and zigzag directions. As shown 

in the Figure S5, the top and side views of the β-InSe photodetector in the armchair 

and zigzag direction. 

 

 



Figure S13. Construction of the β-InSe crystal structure. (aa) Top-view of β-InSe 

supercell. a1 and a2 denotes the basis vectors of the hexagonal lattice. Arrows indicate 

the armchair and zigzag directions. (a) Top-view and (b) side-view two-probe device 

along armchair direction. (c) Top-view and (d) side-view two-probe device along 

zigzag direction. The angle θ denotes the polarization angle of linear light with 

respect to the current direction. The red dashed lines represent the left and right lead, 

respectively. The remaining is the scattering region. The arrows indicate the polarized 

light used to irradiate the entire scattering region.  

The two-probe device consists of three parts: a scattering region, the left and right 

lead structures, which extend to ±∞ along the transport direction, respectively. The 

current direction is set along the armchair direction in (a)-(b) and zigzag direction in 

(c) and (d) of the β-InSe. Bias was applied on the left lead against the right lead. The 

central section is where the photocurrent flows from the left lead to right lead 

acrossing the scattering region. The whole scattering region is irradiated 

perpendicularly with linearly polarized light. The polarization direction forms an 

angle θ with respect to the current direction. 

 

 

Figure S14. The calculated Bloch waves of Se orbitals. (a) Bloch waves of Se 4px 

orbital along the armchair direction; (b) Bloch waves of Se 4py orbital along the 

zigzag direction. 



 

Figure S15. The band structure of β-InSe. 

From the band structure of the β-InSe, an indirect bandgap about 1.2 eV is observed. 

The valence band maximum (VBM) occurs between the K point and Γ point, while 

the conduction band minimum (CBM) is located at the Γ point. Fig. S15 shows the 

composition of the transition molecular orbitals of Г1 and Г2 which are two 

superposition orbitals mainly denoted by Se 4py and 4px atomic orbitals. 

 

(2) Computational details 

Here, structural optimization is performed using the Nanodcal. Generalized gradient 

approximation (GGA) expressed by the Perdew-Burke-Ernzerhof (PBE) is used to 

describe the exchange correlation functional. The maximum force acting on each 

atom becomes smaller than 0.03 eV/Å. The energy is optimized until it changes less 

than 10-5 eV/atom. The criterion for stress and displacement convergence are 0.05 

GPa and 0.001 Å, respectively. In addition, the double-ξ plus polarization (DZP) basis 

set is employed in this calculation. To avoid the interaction between slabs in the 

neighboring unit cells, a vacuum space along the z direction is set to 20 Å. 

 

(3) Photocurrent calculations 

In this work, we use a method based on density functional theory within Keldysh 

nonequilibrium Green’s function (NEGF-DFT) to calculate the photocurrent. 

Specifically, the electron-photon interaction is treated as a perturbation on the 

self-consistent Hamiltonian of the system (H0). Therefore, the total Hamiltonian of the 



electron-photon system can be written as: 

0

0

ˆ ˆ ˆ
e

H H
m

= + A p  

Where A is the polarization vector of the light. The Green’s functions are written as : 

0 0( )r a

L L R R phG G i f i f G =  +  +  

0 0( (1 ) (1 ) )r a

L L R R phG G i f i f G =  − +  − +  

Where Γ is the linewidth function of the electrodes, represents the coupling of the 

device scattering region to the electrodes. G0r is the retarded Green’s functions 

without photon. G0a is the advanced Green’s functions without photon. The 

photoinduced current is calculated by as follow: 

( )
2 2

ph

e dE
I T E


=   

Where α represent the lead of source/drain. Tα(E) is the effective transmission 

coefficient of lead α, which can be expressed as: 

 ( ) [(1 ) ]ph phT E Tr i f G f G   

 =  − +  

Where Γα represents the line-width function which describes the interactions between 

the lead α and the scattering regions. fα is the Fermi distribution function of lead α. Gph 

<and G ph 
> denote the zeroth order approximations of the smaller and greater Green’s 

functions based on the Keldysh equation. From above, we calculate the normalized 

photocurrent, the photoresponse function can be written as : 

phI
R

eI
=  

Where Iω is the photon flux. 

  



Thickness dependent anisotropy photoresponse of the β-InSe photodetector 

 

 

Figure S16. Optical images and thickness-dependent anisotropy photoresponse of the 

β-InSe photodetectors: thin one (a, d), middle one (b, e), and thick one (c, f). 

 


