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In vertical van der Waals homo- or heterobilayers with weak 
interlayer coupling, a finite twist angle between layers leads to a 
moiré superlattice that induces periodic modulations of atomic 

structure, energy and optical selection rules1,2. Controlling the twist 
angle with ~0.05–0.1° accuracy3 in graphene bilayers near the magic 
angles leads to completely different correlated electronic phases 
including superconductivity4,5, orbital magnetism6,7 and correlated 
insulator states8. Similar phenomena have been observed in tran-
sition metal dichalcogenide (TMD) twisted bilayers (TBLs)9–11, 
although with a reduced sensitivity to the twist angle12,13. In WSe2 
TBLs, correlated insulating states are observed over a broad range of 
twist angles between 4° and 5.1°, indicating intriguing changes over 
a magic twist angle continuum13.

Those prior experiments on moiré superlattices have been inter-
preted using a rigid lattice model in which the local atomic stacking 
is assumed to be determined by rotating pristine two-dimensional 
(2D) lattices. However, theoretical studies and microscopy experi-
ments have shown that substantial lattice relaxation can occur in 
TMD TBLs14–18. Recent piezoresponse force microscopy (PFM) 
and scanning transmission electron microscopy (STEM)17,18 mea-
surements reveal a tessellated pattern of mirror-reflected triangu-
lar domains in TMD TBLs, separated by a network of thin domain 
boundaries for twist angles θ < 2°. This precise structural informa-
tion challenges the interpretations of previous experiments based 
on a rigid lattice picture.

In this work, we reveal an intricate connection between pho-
non spectra and moiré lattice reconstruction. Our discoveries are 
enabled by Raman measurements on a series of MoS2 TBLs with 
precisely controlled twist angles and by a theoretical approach for 
calculating moiré phonons. With increasing twist angle, recon-
structed moiré lattices can be categorized into three different 
regimes. In the relaxed (0° ≤ θ < 2°) and rigid (θ ≥ 6°) regimes, the 

Raman spectra hardly change with the twist angle. In the transi-
tion regime (2° ≤ θ < 6°), however, low-frequency interlayer shear 
(S) and layer breathing (LB) modes evolve rapidly with twist angle. 
This evolution is driven by lattice reconstruction and ultra-strong 
coupling of different phonon modes. We further attribute a splitting 
of the commonly observed high-frequency intralayer E2g mode to 
the local distortion of the hexagonal lattice within each monolayer. 
The excellent agreement between experiment and theory allows us 
to unambiguously identify phonon hybridization in the ‘magic con-
tinuum’ angle range. In the big picture, we thus open an important 
‘phonon’ perspective on recently observed strong correlation phys-
ics in TMDs. By measuring and analysing moiré-scale wavelength 
phonons, we show that these degrees of freedom have their own 
unique moiré physics.

Atomic reconstruction in twisted bilayers
The atomic reconstruction of the moiré pattern is determined by 
a twist-angle-dependent competition between strain and interlayer 
coupling15,17,19–21, as shown in Fig. 1 (Supplementary Discussion 
I for detailed calculation). At small twist angles, the real space 
supercell is very large, allowing substantial lattice relaxation even 
though it is driven by weak van der Waals interactions between 
the layers and inhibited by strong in-plane bonding within each 
layer. The relaxation pattern forms large triangular regions in 
which the energetically favourable stacking configurations (Fig. 1c 
right column and Supplementary Discussion I) known as AB(BA) 
stacking (or 3R stacking for θ = 0°; Supplementary Discussion II) 
are approached15,22. The local strain (left column in Fig. 1c) in the 
relaxed regime peaks along domain boundaries and at topological 
defects23 with AA stacking where domains intersect.

As the twist angle increases and real space supercell size 
decreases, the distance between neighbouring AB and BA stacking 
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configurations is reduced (Fig. 1d). Correspondingly, the area occu-
pied by the domain walls that interpolate between them increases 
steadily across a transition regime. Finally, the TBL reaches the rigid 
regime at large twist angles (θ ≥ 6°). In this regime (Fig. 1e), the area 
with nearly perfect low-energy and high-symmetry AB(BA) stack-
ing is small. The resulting reduction of strain leads to essentially 
flat24 rigid layers15,25. The evolution of the low-energy AB(BA) area 
(red line) and the high-energy AA area (green line) as a function of 
twist angle is summarized in Fig. 1f (top), while the area-averaged 
strain is summarized in Fig. 1f (bottom). These variations of 
atomic configuration and local strain are expected to modulate the  
lattice vibrations.

Strain and coupled phonons observed by raman 
spectroscopy
We measured Raman spectra from a series of MoS2 TBLs with accu-
rately controlled twist angles in the range 0° ≤ θ ≤ 20°. Details of 
the sample preparation procedure and Raman measurements are 
discussed in the Methods and Supplementary Discussion III. The 
measured spectra feature several phonon modes divided into the 
low-frequency (Fig. 2a) and high-frequency ranges (Fig. 2b). The 
low-frequency Raman spectra exhibit two types of phonon modes, 
the interlayer S and LB modes, in which the relative motion of 
the two monolayers is parallel or perpendicular to the 2D layers, 
respectively26–29 (Fig. 2a top). These two types of phonon modes 
are identified based on their distinct polarization dependence 
in polarization-resolved Raman measurements. The LB Raman 
modes have a fine structure due to coupling to discrete LB modes 
of the hexagonal boron nitride (hBN) substrate with a finite thick-
ness30 (Supplementary Discussion V). We remove this fine struc-
ture30 (Supplementary Fig. 6) to focus on the main features related 
to moiré pattern reconstruction via a fast Fourier transform fil-
ter (Supplementary Discussions VI and VII). As the twist angle 
increases, one branch of the LB mode (LB1) blueshifts and seems to 

disappear along with the S mode, while a second branch of the LB 
mode (LB2) emerges. In the high-frequency Raman spectra there are 
two dominant intralayer modes (Fig. 2b), commonly denoted as E2g 
(385 cm−1) and A1g (407 cm−1) following the assignments appropri-
ate for the D6h symmetry of bulk (2H stacked) MoS2 (refs. 31,32). The 
two-fold degenerate E2g mode originates from opposite motions of 
two sulfur atoms relative to the Mo atom within the 2D plane, while 
the A1g mode arises from the out-of-plane relative vibrations of the 
sulfur atoms31,33 (Fig. 2b top). Although the A1g mode frequency 
is nearly independent of twist angle, the E2g mode evolves into a 
doublet in the 2° ≤ θ < 6° transition regime, which we will discuss in 
more detail below. While Raman measurement on TMD TBLs has 
previously been reported24,34–37, those experiments were performed 
on samples with much less control of twist angle and missed the 
systematic phonon renormalization captured by our experiments.

The evolution of the Raman spectra is further analysed by track-
ing the peak positions and linewidths as a function of twist angle 
(Fig. 3a–c). Distinct features emerge in the three regimes. In the 
relaxed regime (0° ≤ θ < 2°), the frequencies and linewidths of all 
modes exhibit little change because the moiré patterns remain 
qualitatively the same (matching the θ = 0° case26) with only quan-
titative changes in the AB(BA) domain area. In the transition 
regime (2° ≤ θ < 6°), the phonon spectra change drastically. The S 
mode broadens and quickly disappears. There is also a rapid and 
systematic change in the frequency and intensity (Supplementary 
Discussion IX). Prominently, the evolution of the LB modes resem-
bles an anticrossing behaviour (Fig. 3a) typically observed when 
hybrid modes form due to coupling between different phonon 
modes, as we explain below. The linewidth of each phonon mode 
directly reflects the phonon lifetime. Assuming38 that the linewidth 
γ is related to the lifetime τ by τ = ℏ/γ, where ℏ is the reduced Planck’s 
constant, we find that the lifetime of the LB1 mode is 49 ps and 
7.1 ps for TBLs at 2° and 3.3°, respectively. These drastic changes 
in phonon frequency and lifetime in the transition regime may be 
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Fig. 1 | Twist-angle-dependent lattice reconstruction in MoS2 TBLs with small twist angles. a,b, Two rotated layers of MoS2 without (a) and with (b) lattice 
relaxation (exaggerated for clarity). c–e, Calculated patterns of local strain (left column) and stacking (right column) at various twist angles. The plots are 
drawn in moiré cell units to facilitate comparison of quasi-periodic supercells of different sizes. Three distinct lattice reconstruction regimes can be identified: 
the relaxed regime (black rectangle, c), the transition regime (orange rectangle, d) and the rigid regime (blue rectangle, e). The inset illustrates the area of 
AA (dark green) and AB(BA) (dark red) stacking within a rigidly rotated bilayer. f, The top shows the fraction of the total area covered by AB(BA) (dark red) 
or AA (dark green) stacking. Area is counted as AA/AB(BA) if the relative displacement between the layers is smaller than 0.25 times the lattice constant. 
The insets represent three representative lattice stackings corresponding to twist angles at 0.7°, 2.6° and 7.5° (grey lines). The bottom shows the evolution 
of the average (local) strain in the system (exact definition as in Supplementary Discussion I).
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used to infer twist angle and supercell size on the basis of the TBL 
Raman spectra alone, offering a simple and powerful spectroscopy 
technique to characterize moiré crystals. The onset of the transition 
regime identified by Raman spectra at θ of ~2° agrees remarkably 
well with a very recent STEM study performed on mechanically 
stacked MoS2 TBLs17. Finally, in the rigid regime with θ ≥ 6°, incom-
mensurate stacking again results in stable Raman spectra with lit-
tle dependence on the twist angle. In this regime, the exponential 
dependence of the polarizability on the layer separation substan-
tially reduces the intensity of the S mode, explaining why it is not 
observed in our experiments24,34,35 (Supplementary Discussion X).

Clear signatures of three reconstruction regimes are also found 
in the high-frequency E2g mode (Fig. 3c). In the relaxed regime, 
strain is absent except on the sharp domain walls. Since domain 
walls only account for a small fraction of the total sample area in 
the relaxed regime, their influence is not observed in our far-field 
measurements but may be revealed in near-field measurements14. 
Meanwhile, strain is too small in the rigid regime. Thus, no clear 
peak splitting is observed in either of these two regimes. By contrast,  

the mode splits into a doublet E+
2g and E−

2g in the transition regime 
due to local strain caused by the atomic reconstruction. High strain 
locally distorts the hexagonal unit cell and breaks the three-fold 
rotational symmetry, ultimately causing the E2g mode to split39,40 
(Fig. 3d). Based on a two-peak fitting (Supplementary Discussion 
VI), the largest splitting of the E2g mode, up to 3.2 cm−1, occurs at 
the θ = 2.5° TBL, where the influence of strain on hexagonal sym-
metry is maximal (Fig. 1f bottom). Notably, our measurements 
report averaged strain under the laser spot. Local variations of 
strain within a moiré supercell can be resolved using a near-field 
technique14. However, reaching a sufficient spatial resolution in the 
transition regime, where the supercell size ranges from 9 nm (2°) to 
3 nm (6°), would be very challenging. Previous Raman spectroscopy 
experiments on TBLs24,35,41–46 with less accurate twist angle control 
have focused on the electronic enhancement of the Raman signal 
or on moiré folded phonons. They have been explained via pristine 
cell calculations26, simple zone folding41 and effective force con-
stant models30. While twist-angle-dependent phonon modes have 
been predicted in supercell calculations42,47, their relation to lattice 
reconstruction and mode hybridization48 has not been observed 
experimentally.

We confirm the presence of atomic reconstructions in a TBL 
at a θ of ~0.08° by PFM measurements. The large strain gradients 
near the AA stacking regions and the domain walls (Fig. 1c–e) 
allow piezoelectric coupling to an out-of-plane a.c. electric field18 
(Methods). PFM data in Fig. 3e clearly reveal the reconstructed 
moiré superlattice with a typical size of ~230 nm as expected. The 
superlattice is divided into large triangular AB/BA domains by nar-
row domain walls that locally break the single-layer D3h symmetry 
(Fig. 3d). The results confirm the high quality of our samples and 
the expected moiré reconstructions in the relaxed regime.

A continuum model to understand phonon renormalization
Simple models such as phonon dispersion folding41 or force constant 
models27,30,42 previously developed to describe Raman experiments 
in bilayers cannot explain the complicated evolution of modes we 
observe. Full ab initio calculations become too expensive at small 
twist angles24 and are, like effective force constant models of super-
cells47, limited to commensurate twist angles (Fig. 4a). Here, we adapt 
a low-energy continuum model approach, developed by Bistritzer 
and MacDonald49,50, to calculate the electronic system of moiré 
superlattices, to phonons in TBLs (Supplementary Discussion XI for 
details). The pristine lattice vectors a1 = (a0, 0), a2 = a0(−1,

√

3)/2 
(Fig. 4b) define the adjoint reciprocal lattice vectors G. In the small 
angle limit, the relationship between the displacement d between lay-
ers (which characterizes local stacking) and position within the moiré 
pattern maps G onto the reciprocal lattice vectors G̃ of the moiré cell 
via G̃(θ,G) ≈ −θẑ× G (Fig. 4c), with ẑ the out-of-plane unit vec-
tor. We calculate phonon modes from local crystalline dynamical 
matrices D̄ evaluated as a function of the displacement d (Fig. 4b). To 
calculate the optically active phonon modes near the central Γ point, 
we assemble the moiré dynamical matrix D̄m(q, q′) from matrices 
D̄(q|d) evaluated for each local stacking d via Fourier transform,

D̄m(q, q′) =
∑

G,d
δ
(

q− q′

− G̃(θ,G)
)

D̄(q′

|d)eid·G. (1)

This moiré dynamical matrix is off-diagonal in the reciprocal space 
variable q(′) because of the slow spatial variation of d. We find that 
small ∣G∣ terms dominate in equation (1), allowing us to truncate 
the sum after the first shell of six non-zero reciprocal lattice vectors, 
coupling each q point in the moiré reciprocal unit cell to six repli-
cas. In particular, the central Γ point is coupled to six neighbours 
G̃1…6 (blue dots in Fig. 4c). The D̄(q|d) for each displacement d can 
be straightforwardly obtained from density functional perturbation 
theory. This model does not include any free parameters.
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panel; note that scale factors of 1.0 are omitted. The illustrations at the top 
show the schematic diagrams of the atomic eigenvectors for each phonon 
mode. The S mode (LB modes) corresponds to in-plane (out-of-plane) 
relative motions of the constituent layers; the E2g mode corresponds to 
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When truncating the expansion after the first shell, our model 
yields a total of 126 modes, that is, 18 modes that are folded by the 
moiré reciprocal lattice and evolve continuously with twist angle. 
Mode energies calculated at the Γ point of MoS2 probed by Raman 
spectroscopy, neglecting or including lattice relaxation, are shown in 
Fig. 4d or 4e, respectively. We rescale the overall interlayer coupling 
strength by a single factor of 1.15 to match the interlayer frequencies 
at θ = 0° to the experiment (Supplementary Discussion XI).

The LB modes are only weakly twist-angle dependent in both 
the relaxed (LB1 ≈ 40 cm−1) and the rigid (LB2 ≈ 33 cm−1) regimes 
(Fig. 4e). Calculations and measurements match perfectly for 
the LB modes at all θ. We find a prominent anticrossing of the 
LB modes caused by coupling to the dispersive folded transverse 
acoustic modes, in excellent agreement with the experimental 
evolution of the LB modes in the transition regime (Fig. 3a). At 
θ ≈ 3.5°, the folded transverse acoustic phonon modes originating 

at G̃ = G̃1…G̃6 (grey lines in Fig. 4d) are degenerate with the LB 
mode at q = Γ. The ultra-strong coupling between the two modes 
can be explained by the large d dependence of D̄(q′|d) in the cor-
responding spacial direction. By comparing calculations without  
(Fig. 4d) and with (Fig. 4e) lattice relaxations, one recognizes that 
the LB modes are similar in both cases. Thus, although the rapid 
evolution of the LB modes coincides with the transition regime, our 
calculations suggest that this is not caused by the atomic reconstruc-
tions of the moiré pattern.

Only when accounting for relaxation of the lattice via elastic-
ity theory (Fig. 4e and Supplementary Discussions I and XI (sec-
tion C)), the instability (for example, imaginary frequency for the S 
mode) of the rigid TBLs for θ ≲ 4° is removed. At small twist angles, 
lattice reconstruction causes the degenerate S mode frequencies to 
shift and match the measured values. For larger angles, our model 
overestimates the corrugation (variation of layer separation in d) 
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of the moiré pattern24, causing deviations between the calculated 
and measured S mode frequencies (Supplementary Discussion 
X). Neglecting its atomistic structure, the moiré patterns preserve 
C3 symmetry even in the presence of lattice relaxation and there-
fore conserve the degeneracy of the S mode at the Γ point present 
for θ = 0°. Given the complex interplay of layer separation, mode 
coupling and lattice reconstruction, a detailed explanation for the 
behaviour of the linewidth is outside the scope of the present work.

We also calculate the evolution of the A1g and E2g Raman peaks 
with twist angle. While the optically active A1g mode is hardly 
affected by the moiré, local strain lifts the degeneracy of the E2g 
mode by breaking the hexagonal symmetry39,40. The non-uniform 
strain present in moiré structures (Fig. 1c–e) becomes uniaxial at 
the domain walls (Fig. 3d), breaking the single-layer D3h symmetry 
and causing splitting of the E2g mode into E±

2g (ref. 39). The observed 
proportionality between the splitting E+

2g − E−

2g (Fig. 4f) and the 
average strain (Fig. 1f) further corroborates our model and under-
pins the crucial role of strain in these systems.

Summary and outlook
In summary, our study reveals that phonon spectra are renor-
malized in reconstructed MoS2 moiré superlattices. We discover 
three regimes of atomic reconstructions characterized by distinct 
Raman spectra. We anticipate that these regimes and the phonon 
renormalization will occur in other TBLs although the range of 
the twist angle could vary. The most interesting Raman spectral 
changes in the transition regime suggest a continuous and subtle 
evolution of atomic configurations and strain. Such information is 
partially accessible via scanning tunnelling microscopy14 but chal-
lenging for many common scanning probe and near-field tech-
niques. In the same regime, a rich variety of electronic phases in 
TMD TBLs have been reported13, highlighting the importance of 
reconciling electronic phases with static and dynamic lattice prop-
erties. To treat the phononic and electronic degrees of freedom on 
an equal footing, we introduce a computationally efficient method 
to describe phonons in moiré crystals at any small twist angle, 
which can be extended to describe electron–phonon interaction in 
the future. Thus, our work is also a necessary step towards address-
ing the influence of electron–phonon interactions on the Wigner 

crystal state stability9, magnetic order10 and metal–insulator transi-
tions13 in TMD moiré materials.
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Methods
Sample preparation. The samples were fabricated using a modified tear-and-stack 
technique3. A schematic diagram of the stacking process is presented in 
Supplementary Fig. 3a. The hBN and monolayer MoS2 flakes were mechanically 
exfoliated from a bulk crystal onto a polydimethylsiloxane sheet. The hBN 
thickness was typically around 15 nm, measured by atomic force microscopy. 
The MoS2 monolayer was identified by optical contrast spectroscopy and Raman 
spectroscopy. The bottom hBN was first transferred onto the Si/SiO2 (90 nm) 
substrate and subsequently annealed at 500 °C for 10 h. The van der Waals force 
between hBN and the MoS2 monolayer was used to tear a part off the monolayer 
flake at room temperature, which was transferred onto the hBN. The separated 
monolayer pieces were rotated by a specific angle and stacked together. The 
accuracy in controlling the twist angle was ~0.1°. Finally, the samples were 
annealed under ultrahigh vacuum (around 10−5 mbar) to enhance the coupling 
between two layers. To avoid possible rotations between the layers, a relatively low 
temperature (150 °C) and a short process time (2 h) was used for the annealing. 
We carefully checked the microscope images before and after annealing and found 
no rotations during the annealing for all samples (Supplementary Fig. 3b,c). The 
spatial uniformity of the optical properties of the TBLs was futher confirmed via 
low-frequency Raman mapping (Supplementary Fig. 4).

Raman measurement. Raman spectra were measured at room temperature using 
a Princeton Acton 7500i spectrometer equipped with a liquid-nitrogen-cooled 
charge-coupled detector, with a ×100 objective lens (numerical aperture, 0.90). 
BragGrate notch filters were used to reject the Rayleigh scattering down to 8 cm−1. 
The excitation laser was a 532 nm (that is, 2.33 eV) continuous-wave laser from a 
Verdi V10. A grating with 1,200 lines mm–1 was used in the Raman measurements. 
An incident laser power of 0.2 mW was used to avoid sample heating. The 
excitation laser and collected Raman signal were collinearly polarized.

PFM measurements. In a PFM measurement, an a.c. bias is applied on the 
conductive tip to induce sample deformation through the piezoelectric effect. 
The amplitude and phase of vertical (out-of-plane) and horizontal (in-plane) 
deformations of the sample are recorded during the contact-mode scan, 
providing local information of the electromechanical response. The experiments 
were performed on a commercial atomic force microscope (XE-70 AFM, Park 
Systems). A lock-in amplifier (HF2LI, Zurich Instruments) was used to apply the 
a.c. bias (typically around 1 V) and demodulate the PFM signals. The radius of 
the cantilever probe (ANSCM-PT-10, App Nano) was less than 30 nm, and the 
force constant was ~1–5 N m–1. For out-of-plane PFM, the first harmonic of the 
cantilever resonance (~80–90 kHz) was used for detection. For in-plane PFM, the 
third harmonic frequency (~320–330 kHz) was used for detection.

Density functional perturbation theory calculations. To build the low-energy 
continuum model, two types of density functional perturbation theory calculations 
are required. For the q-dependent parts of the moiré dynamical matrix we calculate 
one single layer of MoS2 using a 6 × 6 × 1 supercell. For the q-independent part, 
we employ 10 × 10 individual primitive cell bilayer MoS2 density functional 
perturbation theory calculations sampling the different stackings d. We use Vienna 
Ab-initio Simulation Package with a k-point Monkhorst–Pack grid of 17 × 17 × 1 
(3 × 3 × 1 for the supercell) with an energy cut-off of 400 eV and a unit cell height of 
35 Å to provide sufficient vacuum between the layers51,52. For simplicity we use the 
local density approximation (for further details see Supplementary Discussion XII).

Calculation of strain and lattice relaxation. Strain was calculated by minimizing 
the total energy functional,

Utot = UB[ut, ub] + UE[ut] + UE[ub],

with respect to the top (t) and bottom (b) layer displacements ut/b(r) at position 
r. We model the potential energy functional UB via a generalized stacking fault 
energy15,25 obtained from sampling the configuration space using density functional 
perturbation theory. The 2D elastic energy functional UE[ut(b)] is modelled using 

the Lamé parameters λ = 3.29 eV Å–2 and μ = 3.6 eV Å–2 (ref. 15; for further details see 
Supplementary Discussion I).

Data availability
All relevant data are available from the authors upon reasonable request.

Code availability
All relevant codes are available from the authors upon reasonable request.
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I. MODELING LATTICE RELAXATION

(a) (b)

FIG. S1. Illustration of the generalized stacking fault energy (GSFE). In configuration space (a) and in reciprocal space (b).

We model lattice relaxation by solving a scheme employed for graphene bilayers by Nam et. al. [1] and generalized

for MoS2 by Carr et. al. [2]. For details we refer to their publications. The approach is based on an elasticity model

which includes the second layer via an effective generalized stacking fault energy (GSFE). The total potential energy

functional Utot is split into an interlayer (UB) and intralayer(elastic) (UE) energy functional contribution and then

written as [1, 3],

Utot = UB[ut,ub] + UE[ut] + UE[ub] (S1)

with

UB[ut,ub] =

∫
dr
∑
G

cG cos((d + (ut − ub)) ·G) (S2)

UE[u l=t/b] =

∫
dr

[
λ+ µ

2

(
∂ulx
∂x

+
∂uly
∂y

)2

+
µ

2

(
∂ulx
∂x
− ∂uly

∂y

)2

+
µ

2

(
∂ulx
∂y

+
∂uly
∂x

)2
]
. (S3)

Here λ = 3.29 eV/Å
2

and µ = 3.6 eV/Å
2

are the Lamé parameters of pristine MoS2[2], the cG correspond to the

Fourier coefficients as illustrated in Fig. S1b, i.e., the values, c±G1
= c±G2

= c±(G1−G2) = 7.8 meV/Aunit,

c±(G1+G2) = c±(2G1−G2) = c±(−G1+2G2) = −2.2 meV/Aunit and c±2G1
= c±2G2

= c±(2G1−2G2) = −0.7

meV/Aunit. We solve for the minimal energy (Eq. S1) under variation of in-plane displacements of the top

and bottom layer ut/b using a generalized Euler-Lagrange equation. We neglect the position dependence of u(r) in

the notation for brevity.

Since the two layers are equivalent we can define the relative displacement between the two layers as u−(r) =
ut(r)

2 = −ub(r)
2 [1]. We assume a layer separation equal to the one calculated for the pristine configuration space by

DFT, a simplification especially suited for the small twist angle regime.

The GSFE profile was obtained from the total energies of the pristine bilayer DFPT calculations (see SI. XII (B)).

Intralayer strain

We calculate local intralayer strain ε via the squared sum of the eigenvalues of the two-dimensional Cauchy strain
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tensor as

ε =
√
λ21 + λ22 with λ1,2 = Eig

 ∂ut(b)x

∂x
1
2 (
∂ut(b)x

∂y +
∂ut(b)y

∂x )

1
2 (
∂ut(b)x

∂y +
∂ut(b)y

∂x )
∂ut(b)y

∂y

 . (S4)

The exact quantitative evolution of E±2g with strain depends on the local strain direction and the local Poisson

ratio[4]. Indeed, strong local variations make an exact parametrization challenging. We have checked numerically

that the qualitative predictions of our model are robust against varying definitions of strain. For simplicity, we thus

use the definition of Eq. (S4).

Substrate effects on the lattice reconstruction

The lattice constants of the hBN substrate (ahBN) and MoS2 (aMoS2
) differ by & 20%. While formally a similar

configuration space energy functional as in Eq. S1 could be constructed to also account for relaxation due to the

substrate (replacing the definition of d(r) with d(r) = (
aMoS2

ahBN
− 1)r + θẑ × r [5]), the large difference in lattice

constants will cause the elastic energy to dominate the expression at any angle, leading to vanishing displacements

due to the substrate GSFE. The influence of the substrate on lattice relaxation can therefore safely be neglected.
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II. SCHEMATIC DIAGRAMS OF ATOMIC STACKING

FIG. S2. Schematic diagrams of local high-symmetry stacking configurations in a TBL near a commensurate R-type stacking.

Such a R-type bilayer is often referred to a bilayer with 0◦ twist angle.

Regions of high symmetry stacking are present in every moiré superlattice at twist angles close to 0◦ twist angle.

We refer to these stacking areas by their pristine alignment AA, AB and BA, as illustrated in Fig. S2. AB and

BA stackings are equivalent, except for an inversion along the z direction. For AB(BA) stacking, S(Mo) atoms are

directly on top of Mo(S) atoms and the other Mo and S atoms are at the center of the hexagon. For AA stacking,

Mo(S) atoms are directly on top of Mo(S) atoms.
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III. SAMPLE PREPARATION

FIG. S3. (a) Schematic diagram of the sample preparation procedure. (b-c) Optical images of a sample at 2.5◦ twist angle

(b) before and (c) after annealing. By carefully checking the sample image before and after annealing, we confirm that there

is no change in twist angle during annealing for all TBLs.
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IV. LOW-FREQUENCY RAMAN MAPPING

FIG. S4. The low-frequency Raman mapping of 2.5◦ TBL

To confirm the spatial uniformity of optical properties of the twisted bialyers, we map the low-frequency Raman

spectra using a Jobin-Yvon HR800 micro-Raman system equipped with a liquid-nitrogen-cooled charge couple

detector (CCD). The excitation laser was focused onto the sample using a ×100 objective lens (numerical aperture

= 0.90). The excitation source is the 2.54 eV line from an Ar+ laser. Fig. S4 shows the integrated intensity of

low-frequency phonon modes of 2.5◦ TBL, including both the shear mode and layer breathing mode. The scan area

is 14 by 34 µm with a step size of 2 µm. The small fluctuations of Raman intensity suggest the uniform interlayer

coupling and high quality of the TBLs.
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(b) (c)

(a)

α⊥
hBNα⊥

intα⊥
MoS2

FIG. S5. (a) Linear chain model of a hBN/MoS2 heterostructure. (b)-(c) Frequencies (ωi) of the individual modes versus the

intensity Ii (dots), when solving for the linear chain model using realistic force constants, with varying force constants. Solid

lines are Lorentzian fits, resembling the envelope function. Evolution of the envelope function under a combined variation

of (b) α⊥hBN and α⊥int and (c) α⊥MoS2
. Dashed lines mark the corresponding LB mode frequency ω0 of the standalone bilayer

system as calculated with the linear chain model.

V. SUBSTRATE EFFECTS

Previous publications have shown that the coupling between the hBN substrate and the MoS2 layers leads to

bulk-like LB phonon modes that extend over the entire TMD/hBN heterostructure. Such extended phonons can be

modeled by a linear chain model, treating each layer as a rigid entity[6] (see Fig. S5a). We use the interlayer bond

polarizability model developed by Lin et al. [6] to describe the Raman response of the LB modes for our MoS2 on hBN

heterostructure. To test the robustness of our results against substrate effects we calculated the linear chain model

with realistic force constants (α⊥hBN = 9.88×1019N/m3, α⊥int = 8.97×1019N/m3 and α⊥MoS2
= 8.9×1019N/m3)[6, 7]

(see Fig. S5a). We include 39 layers of hBN (equals 12.9 nm think substrate as used in the experiment) as well as

two layers of MoS2. While the individual breathing eigenmodes Qi of the heterostructure indeed extend over all

layers, their intensities Ii can be mapped using the single breathing mode Q0 of one isolated TMD bilayer via [6]

Ii ∝ |〈Q0|Qi〉|2. (S5)

The maximum of the envelope function at ω̄ of the resulting Ii is close to the frequency of the standalone bilayer ω0,

and describes the experimentally observed Raman intensity envelope (see SI. VI, in particular Fig. S6 and Fig. S7).

We find that ω̄ is slightly blue-shifted (≈1.5 cm−1) compared to the standalone bilayer frequency ω0 (compare

yellow curve in Fig. S5b versus dashed blue line at 39 cm−1). This might explain the systematic underestimation of

LB mode frequencies calculated by DFPT. Under variations of α⊥MoS2
the frequency ω̄ shifts almost proportionally

to the force constant, while the frequency of the corresponding standalone system ω0 (dashed lines in Fig. S5)
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follows accordingly. We find only a minimal increase in difference between ω̄ and ω0.

As the hBN does not affect the lattice reconstruction of the MoS2 layers (see SI. I), we do not expect any variation

of the effective interface force constant (α⊥int) and hBN force constant (α⊥hBN) with twist angle. Nevertheless we

tested the dependence of the envelope function center under variations of α⊥hBN and α⊥int. We find that ω̄ is robust

against individual and combined variations of αhBN and αint. Variations in the range of 0.5× αi − 2× αi result in

shifts of ω̄ smaller than 2 cm−1 (see Fig. S5b).

In conclusion, the substrate couples strongly to the MoS2 layers, but the central frequencies of the intensity

envelope of the bulk-like LB phonons map the LB mode frequency of the corresponding standalone TMD TBL

(shifted by ≈ 1.5 cm−1). The twist angle dependent frequency evolution of the LB mode only depends on the twist

angle dependent effective force constant between the TMD TBLs.
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VI. DATA ANALYSIS

FIG. S6. (a) Data processing of the low-frequency Raman spectra from the sample with 0◦ twist angle in the main text. (b)

The Lorentz fitting of both low-frequency (0◦ sample) and high-frequency (2.5◦ TBL) modes.

The low-frequency Raman data shown in the main text is not the raw data directly obtained from our measure-

ments. The raw data includes oscillatory signals originating from the coupling between the TMD TBLs and the

hBN substrate. Such oscillatory signal distracts from the main features relevant to the moiré pattern. We perform

fast Fourier transformation (FFT) to remove such oscillations, which are most prominently visible on the LB modes.

In this section we carefully document this data processing for reader’s reference. We present Raman spectra from

the 0◦ TBL as an example.

We first remove the background by subtracting data taken from the monolayer region. The Raman spectrum

features a sharp S mode and a broad LB mode (see Fig. S6a). Oscillatory signals on the LB mode originate from

the coupling between 2D electrons confined to the MoS2 TBL and the bulk-like LB phonons extending over the

entire vdW heterostructures (vdWHs) as has been previously investigated [6]. We apply a FFT processing to filter

out the oscillatory signal before performing a detailed analysis. To confirm that the FFT processing does not affect

the experimental values, we extract the central frequencies and linewidths before and after the FFT analysis on

various samples. For example, we confirm that the central frequency 39.7 cm−1 and the full-width-half-maximum

of 11.7 cm−1 in the 0◦ TBL do not change due to the FFT. Further discussion about the hBN substrate effect can

be found in the last section.

All the Raman modes are fitted by Lorentz functions (using the software ”origin 2017”) (Fig. S6b). The error

bars of Figs. 3 and S8 are calculated via the mean residual variance (Chi-Sqr) of the fitting parameter using

the ”Origin” software.The low-frequency Raman spectra after FFT processing are well fitted by two Lorentzian

functions (Fig. S6b top), which correspond to the S mode and LB mode, respectively. We also present Lorentzian
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fitting to the high-frequency E2g mode, which splits into two Lorentz lines (E+
2g and E−2g mode) due to the strain

effect in the 2.5◦ TBL (Fig. S6b bottom). It should be noted that splited E2g modes can’t be identified by polarized

Raman measurements due to the directionless of moiré strain.
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VII. RAMAN SPECTRA BEFORE FFT PROCESSING

FIG. S7. Low-frequency Raman spectra before the FFT processing as a function of twist angle. The fringes originate from

the coupling between the TBLs and hBN substrate. The coupling strength changes with the twist angle.

The S and LB modes are distinguished via polarized Raman spectroscopy. The undefined mode in the TBL at

3.3◦ (cyan star) in Fig. 3a-b of the main text cannot be detected in the cross polarization (HV), which is typical

of a LB mode. However, this peak is smooth and has no oscillatory signals. As reported in our previous work[8],

LB modes of MoS2 TBLs should efficiently interact with the LB modes in the hBN due to the strong interfacial

coupling between the hBN and TBLs (see SI. V), resulting in bulk-like collective LB vibrations of entire layers in

the vdWHs. Due to these conflicting properties of this mode, we refrain from assigning this mode in the 3.3◦ TBL.
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VIII. THE LINEWIDTH OF THE E2g MODE

FIG. S8. The linewidth of the split E2g modes as a function of twist angle. The error bars represent the uncertainty of the

fitting parameter in the fitting process.

In Fig. S8, the linewidth of E+
2g first increases and then decreases as a function of the twist angle within the

transition regime, while the E−2g mode shows an opposite evolution. The linewidth of the E+
2g broadens by a

maximal value of 2.7 cm−1 relative to the rigid/relaxed regime. The large error bars in the transition regime are

ascribed to fitting errors.
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IX. BREATHING AND SHEAR MODE INTENSITY

FIG. S9. S and LB mode intensities as a function of twist angle. The stars indicate the experimental LB and S mode

intensities. The solid lines are the S and LB mode evolution weighting the relative variations of the AA and AB(BA)

stacking area as a function of strain. ISAA(AB) = 0.0(5.36) [a.u.] and ILBAA(AB) = 1.44(39.25) [a.u.] are the DFPT calculated

Raman intensities at the high symmetry stacking configurations as calculated in [9]. c is an arbitrary scaling factor, equal

for the S and LB mode. We do not include the change of the corrugation in the estimation for the intensity, relevant at θ

> 4◦. The twist angle dependent relative areas AreaAB
Ω

and AreaAA
Ω

are plotted in Fig. 1e of the main text.

Experimental S and LB mode intensities as a function of the twist angle and their theoretical interpretation are

illustrated in Fig. S9. The LB and S mode intensities depend on the relative stacking configuration. In the simplest

approximation, LB and S mode intensities in a moiré crystal can be modeled by weighting the commensurate

stacking LB and S mode intensities I
LB(S)
AB(AA) by their areas within the moiré supercell. The AB(BA) stacking

configuration dominates at small twist angles (AreaAB � AreaAA), therefore the observed intensities are similar to

IAB . With increasing twist angle the intensities of the LB and S modes should decrease as the relative weight of the

AA area increases and IAB > IAA for both modes. While this prediction fits with the measured LB mode intensities

(see Fig. S9), the data for the S mode instead shows an increase in intensity close to θ ≈ 3◦. Considering only

the relative areas of the different stacking configurations neglects changes in corrugation and therefore significantly

deviates from experiment at θ > 3◦. Including the reduction in corrugation at a large enough twist angle (≈ 3◦), we

expect a strong reduction in S mode (and LB mode) intensity (Fig. S10 c), in line with the observed disappearance

of the S mode (see Fig. S9 and [9]), as ISAA ≈ 0.
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}TA & S}LA & S }ZA
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2×UB 3×UB

(a) (b) (c)

FIG. S10. Understanding the S mode evolution. (a) and (b) illustrate the low energy phonon evolution similar to Fig. 4e in the

main text when the GSFE is doubled (a) or tripled (b). The reduced anti-crossing of the breathing mode at ≈ 3.5◦ compared

to the main text can be understood from lattice reconstruction. With larger lattice reconstruction in the transition region,

the coupling element configuration representation becomes less harmonic and the first shell continuum model approximation

becomes less valid. Including more shells opens the avoided crossing to a size as in the main text (not shown). (c) Calculated

intensity evolution of the S mode in an AB(BA) stacking configuration as a function of layer separation, calculated as outlined

in SI. XII C. The dashed red lines indicate the equilibrium layer separation at the corresponding stacking configurations (3R

and AA) as well as the uniform layer separation at large twist angles[9].

X. DETAILED ANALYSIS OF THE SHEAR MODE EVOLUTION

While theory and experiment agree very well concerning the evolution of the breathing modes, our calculations

incorrectly predict a drop in shear mode frequency at intermediate twist angles. To elucidate the reason for this

discrepancy, we note that we neglect the dependence of the corrugation amplitude on twist angle. For small twist

angles (relaxed regime), the various stacking regions (AA vs. AB(BA)) can be viewed as completely independent.

AA as well as AB(BA) stacking configurations are approximately at their equilibrium layer separation[9] (∆AA ≈
6.7Å and ∆AB = ∆BA ≈ 6.1Å). In the transition regime (with increased twist angle, i.e. reduced super cell size),

the stacking configurations move closer to each other and therefore the corrugation ∆ = ∆AA−∆AB is reduced and

the layers become flat, with a uniform spacing of ∆AA ≈ ∆AB ≈ 6.35Å in the large angle limit [9]. The influence of

this reduction of ∆ affects both (i) the S mode frequency and (ii) its intensity. We first consider the frequency (i). A

reduced corrugation causes ∆AA to decrease and ∆AB to increase. These changes increase the differences in GSFE

between AA and AB regions due to its exponential sensitivity on layer separation (the stacking dependent energy

difference in Fig. S1 increases). A larger GSFE difference will increase strain in the system (an observation that

also matches the evolution of the optical mode). This contribution will shift the point at which the relative weight

of the AB(BA) area starts to decline to a larger twist angle, causing the S mode to stay approximately constant up

to a larger twist angle (see Fig. S10a and b). By contrast, without considering the effect of reduced corrugation at

intermediate twist angles on the GSFE, the S mode frequency starts to decrease at a smaller twist angle (≈ 1.5◦)

due to the decrease of the relative weight of the AB/BA regions as seen in our calculations (see Fig. 4e).
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Concerning the S mode intensity (ii), we note that the optical intensity of the S mode stems almost entirely from

the AB stacking configuration, as the change in polarizability for the S mode is maximal at the smallest layer

separation (as noted by [9]). With larger ∆AB for larger twist angles, the change in polarizability with infinitesimal

atom displacements exponentially decays and so does the optical intensity[10] of the S mode (see Fig. S10c).

In summary the S mode has approximately constant energy also for angles reaching into the transition regime

(up to ≈ 3◦) due to increased GSFE stemming from larger strain. Furthermore the S mode vanishes in the rigid

regime due to reduced corrugation and therefore reduced optical intensity.
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XI. LOW ENERGY CONTINUUM MODEL FOR ACOUSTIC PHONONS AT THE Γ POINT

Our low-energy continuum model for phonons is adopted from the model for the electronic system introduced

by J. Jung et al. [5]. We discuss the derivation of the model for completeness and to highlight its usability for

calculating phonons.

A. Derivation of the moiré dynamical matrix D̄m

The dynamical matrix D̄ of a Bloch periodic system in the harmonic approximation can be constructed from the

Hessian matrix H̄ via

Dα,β
I,J (q) =

1√
MIMJ

∑
R−R′

eiR·q ·Hα,β
I,J (R−R′) · e−iR′·q. (S6)

where I(J) refers to the atomic index in the pristine bilayer unit cell with an atom of mass MI(J) and α(β) to the

three Cartesian degrees of freedom. Furthermore R(′) are the positions of the corresponding pristine unit cell,

spanned by a linear combination of pristine unit vectors ai. We define the pristine unit vectors via, a1 = a0(1, 0)

and a2 = a0(−1/2,
√

3/2), with the lattice constant a0 = 3.125 Å.

In the next step we assume that within a moiré system H depends only on the local stacking configuration of the

two layers. For the case of MoS2 TBL, with a small rotation angle, the relation between configuration space d and

a position r can then - within the first moiré length - be approximated by d(r) ≈ θẑ × r and does not change over

the range of one pristine unit cell (d(r) ≈ d(R)). Consequently H is now a function of R and not only of R−R′

as in the Bloch periodic case and therefore not diagonal in reciprocal space anymore,

Dα,β
I,J (q,q′) =

1√
MIMJ

∑
R,R′

eiR·q ·Hα,β
I,J (R−R′|d(R)) · e−iR′·q′

. (S7)

Since d(r) is periodic on the moiré length d(r) = d(r + aM ) and the pristine lattice vector a is related to moiré

lattice vector aM by a ≈ θẑ×aM , we have Hα,β
I,J (R−R′|d(R)) ≈ Hα,β

I,J (R−R′|d(R)+a), which allows the expansion

in terms of pristine reciprocal lattice vectors G,

Hα,β
I,J (R−R′|d(R)) =

∑
G

Hα,β
I,J (R−R′|G) · e−id(R)·G. (S8)

Substituting Eq. S8 into Eq. S7 as well as inserting an additional 1 yields,

Dα,β
I,J (q,q′) =

1√
MIMJ

∑
R,R′

∑
G

Hα,β
I,J (R−R′|G) · eiR·q · eiR·q′ · e−iR·q′︸ ︷︷ ︸

1

·e−iR′·q′ · e−iR·G̃ (S9)

using d(R) · G = θẑ × R · G = −θẑ × G · R = G̃ · R. Substituting R′′ = R − R′ and using the pristine cell

periodicity of Hα,β
I,J (R−R′|G) allows writing

Dα,β
I,J (q,q′) =

1√
MIMJ

∑
R,R′′

∑
G

Hα,β
I,J (R′′|G) · eiR·(q−q′−G̃) · eiR′′·q′

(S10)

which can be further simplified to

Dα,β
I,J (q,q′) =

∑
R

∑
G

·eiR·(q−q′−G̃) 1√
MIMJ

∑
R′′

Hα,β
I,J (R′′|G)eiR

′′·q′

︸ ︷︷ ︸
Dα,βI,J (q′|G)

. (S11)
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We finally end up with a surprisingly simple expression for the dynamical matrix of twisted bilayer MoS2, now

omitting the atomic and Cartesian coordinates and indicating the matrix form via a bar. Furthermore we identify

the resulting dynamical matrix D̄ as the moiré dynamical matrix

D̄m(q,q′) =
∑
G

δ(q− q′ − G̃) · D̄(q′|G)). (S12)

Since we want to compare our calculations with Raman measurements, we are interested in the phonon energies

close to the Γ point. For small θ it holds that |G̃| � |G| and we can approximate D̄(q|G 6= 0) ≈ D̄(Γ|G 6= 0),

with the only q dependence in the dynamical matrix components where D̄(q|G = 0). This G = 0 component

can be further split into an intralayer l(I) = l(J) and interlayer l(I) 6= l(J) part, where we again approximate

D̄inter(q|0) ≈ D̄inter(Γ|0). Approximations involving q → Γ become exact at the Γ-point. In the last approxima-

tion we exploit that |D̄(q|G)| quickly decays to zero with increasing |G|. In fact, we find that already the six first

neighboring Γ-points, {G1,G2,G3,G4,G5,G6} are sufficient, allowing to truncate the reciprocal expansion after

the first ”shell” for small energies.

The final moiré dynamical matrix at the Γ-point for small twist angles can be written as,

D̄m(q) ≈



D̄(q|0) D̄(Γ|G1) D̄(Γ|G2) D̄(Γ|G3) D̄(Γ|G4) D̄(Γ|G5) D̄(Γ|G6)

D̄†(Γ|G1) D̄(q + G̃1|0)

D̄†(Γ|G2) D̄(q + G̃2|0)

D̄†(Γ|G3) D̄(q + G̃3|0)

D̄†(Γ|G4) D̄(q + G̃4|0)

D̄†(Γ|G5) D̄(q + G̃5|0)

D̄†(Γ|G6) D̄(q + G̃6|0)


(S13)

or one matrix block more explicitly,

D̄m(q) ≈


D̄t

intra(q|0) D̄inter(Γ|0) . . .

D̄†inter(Γ|0) D̄b
intra(q|0) . . .

...
...

. . .

 . (S14)

Note that the only explicit angle dependence of Eq. S13 is incorporated in the G̃ dependence of the diagonal blocks.

Only when accounting for lattice relaxation, the dynamical matrix components become implicitly angle dependent

(see mapping in Eq. S17). We neglect coupling between the first shell moiré Γ points, present in Eq. 1, in the main

text, for the sake of simplicity. Its effect on the modes residing at the central Γ point is small, as we have verified

numerically. To correct for the well-known approximations within DFT we include one scaling factor of 1.15 to the

interlayer dynamical matrix component D̄inter(Γ|0) to match the measured phonon energies at θ = 0.
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D̄(Γ|G = Γ) = 0

D̄(Γ|G 6= Γ) = 0 D̄(Γ|G 6= Γ) = 0

ZA
(G 6= Γ)

TA
(G 6= Γ)

LA
(G 6= Γ)

LA/TA/ZA (G = Γ)

}TA & S}LA & S }ZA

LA/TA/ZA

S

LB

(a) (b) (c)

FIG. S11. Illustration of the angle dependent phonon frequencies at the central Γ-point, when the various moiré Γ-points

(Γ,Γ + G̃1, ...) are not coupled, i.e. when D̄(Γ,G 6= 0) = 0. (a) if additionally D̄inter(Γ,G = 0) = 0 and (b) when including

these terms. The color code indicates the projection of the phonon Eigenmode Qi onto the central Γ-point, black lines

indicate the phonon energies of modes residing at the moiré Γ-points (Γ+G̃i). The morié Γ-points are shifted away from the

central Γ-point with increasing angle, since G̃ ∝ θ. Therefore the band evolution of phonons residing at these moiré Γ-point

evaluated at the central Γ-point, resemble the phonon band structure of the single-layer (a) and the coupling-averaged bilayer

band structure (compare also to Fig. S13b). (c) As Fig. 4d in the main text.

B. Adaptions to the acoustic sum rule

To account for the coupling between q off-diagonal components the acoustic sum rule has to be sightly adapted

to

Dα,β
m,I,I(Γ|0) = Dα,β

m,I,I(Γ|0)−
∑
Gi

∑
J 6=I

Dα,β
m,I,J(Γ|G) ·

√
MJ

MI
. (S15)

This form ensures that the sum of all forces acting on individual atoms vanishes in all directions also when including

dynamical matrix components with G 6= 0. The calculated results of the dispersions for LB, S modes and the

acoustic phonon are shown in Fig. S11.

C. Evaluating D̄(Γ,G), including strain

We recognize that

D̄(Γ|G) =
∑
d

D̄(Γ|d) · eid·G, (S16)

and can straightforwardly calculate D̄(Γ,d) from DFT. Via the method introduced in SI. I one can calculate the

displacement u−(r) between the two layers, allowing to map the configuration space onto the distorted configuration

space d→ d + u−(r). With this, one can write

D̄(Γ,d)→ D̄(Γ,d + u−(r(d)))⇒ D̄(Γ,d, θ), (S17)
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0.7◦ 2.6◦ 7.5◦

(a) (b) (c)

(d) (e) (f)

2~a1

2~a
2

FIG. S12. Illustration of strain influence on one component of the dynamical matrix Dẑ,ẑ
Mo,Mo(Γ,d, θ) as a function of twist

angle. (a)-(c) Distortion due to strain of a regular grid sampling the configuration space for 0.7◦, 2.6◦ and 7.5◦ degrees twist

angle. (d)-(f) Evolution of the angle dependent dynamical matrix component Dẑ,ẑ
Mo,Mo(Γ,d, θ) as calculated via (Eq. S17). For

small twist angles (e.g. 0.7◦), the dynamical matrix component is almost entirely built from AB(BA) stacking components,

while the large angle limit (7.5◦) resembles an almost unstrained dynamical matrix component.

since u− is an angle dependent quantity, the mapping of Eq. S17 as well as the Fourier transform of Eq. S16 has to

be performed for each angle θ independently. The effects of the strain mapping on the components of the dynamical

matrix elements is illustrated in Fig. S12. While the dynamical matrix components remain mostly unaffected at

large angles, small angles result in dynamical matrix elements that are almost entirely dominated by AB(BA)

stacking in configuration space. Therefore, this remapping causes the entire moiré lattice to become stable, i.e.

removes all imaginary frequencies present in the calculation without lattice relaxation (compare Fig. 4(e) of the

main text).

D. Real space interpretation of phonon modes

The individual phonon eigenmodes Qi(r) in real space can be obtained from the moiré dynamical matrix equation,

ω2
i (Γ)Qi,G̃ =

∑
G̃′

D̄m(Γ,Γ + G̃′)Qi,G̃′ (S18)

via

Qi(r) =
∑
G̃

Qi,G̃e
−iG̃·r, (S19)

allowing to calculate the displacement of each eigenmode Qi at position r within the quasi supercell. The phonon

eigenmodes of the LB1 and LB2 modes at the twist angle of the anti-crossing (3.5◦) are rather complex (Fig. S14).

Yet, they are complementary to each other and the LB modes have a significant in-plane component.
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(a) (b)

FIG. S13. Phonon band structures of single layer and effective bilayer MoS2, with mode assignment as in[11]. (a) The

phonon band structure of single layer MoS2 as calculated from DFPT. (b) The phonon band structure of an effective bilayer

MoS2, calculated using D̄(q|0). In such an effective bilayer the interlayer dynamical matrix elements Dα,β
I,J,inter(q,G = 0) are

not q-dependent, i.e. D̄inter(q,G = 0) ≈ D̄inter(Γ,G = 0) (see also Eqs. S13-S14)

.

FIG. S14. Illustration of the eigenmodes Q(r) of the LB1 (bottom row) and LB2 (top row) modes at a twist angle of 3.5◦.

For simplicity only the mode components of the first layer (l = 1) are illustrated, the displacements of the second layer (l = 2)

are given by Ql=1(r) = −Ql=2(r). Neighboring atoms in the same layer move in sync with each other. The left column

shows the displacements in the xy-plane, the right column out-of-plane displacements (z). Displacements are enhanced for

better illustration, L1/2 are the quasi supercell lattice vectors.

XII. DETAILS ON THE AB-INITIO CALCULATIONS

We have performed two types of ab-initio calculations. (A) A DFPT super cell calculation of single layer MoS2

to evaluate the q-dependent parts of the moiré dynamical matrix as defined in (Eq. S13) and (B) DFPT primitive
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cell calculations of bilayer MoS2 to sample the configuration space and evaluate the q-independent parts of D̄m. In

the following we will discuss the computational details of each type.

A. Details on the single-layer DFPT calculation

We used VASP[12, 13] in the local-density approximation (LDA), together with a 3×3×1 k-point sampling and a

cutoff of 400 eV, in a 6×6×1 unit cell containing 108 atoms, with a lattice constant of 3.125 Å and a z-direction pe-

riodicity of 35 Å suppressing any coupling between the periodic images. The forces between atoms where calculated

using PHONOPY[14] and VASP DFPT functionality. To account for an in total force free system, translational and

rotational sum rules where enforced. To enforce the rotational sum rules we followed the implementation used in the

Hiphive code[15]. The resulting single layer phonon dispersion relation is illustrated in Fig. S13a. The calculated

phonon frequencies are in good agreement with existing literature[11].

B. Details on the bilayer DFPT

Components of the moiré dynamical matrix that couple the two layers are all evaluated at the Γ-point, as can

be see from Eq. S13. We employ this Γ-point-only description, as it is sufficient to calculate the primitive cell

bilayer system for various stacking configurations. We sample the configuration space on a 10×10 grid. For each

configuration only the xy directions of the two Mo atoms are kept fixed and the system is otherwise allowed to

minimize the Hellman-Feynman forces. Although fixing more than one atom results for most pristine stacking

configurations in a slightly unstable structure, we expect the harmonic approximation to still be valid, since the

anharmonic components stemming from xy displacements of the Mo atoms are expected to be very small.

For the calculation of the primitive cell bilayer system we use a 17×17×1 k-point grid in the simple LDA

approximation with a cutoff of 400 eV and unit cell of 35 Å height. Although LDA is a rather crude approximation

to account for Van-der-Waals coupled systems, it captures the layer separation reasonably well [9]. Fig. S15

illustrates the 3 configuration dependent interlayer Raman modes at the Γ-point. While the LB mode varies only

by a comparatively small margin (≈ 15.6 cm−1) for various stackings, the S modes vary over a far wider energy

range, and lift their degeneracy, when the stacking configuration is moved away from a high symmetry point. Most

importantly the S modes are unstable for most configurations, naturally forcing the system into an AB(BA) stacking

configuration.

C. Details on the Raman intensity calculations

Off-resonant Raman intensity calculations as a function of layer separation where calculated in an AB stacking

configuration using a scheme by Porezag et.al ([10]) sampling the layer separation between 6 and 6.75 Å in steps of

0.05 Å. Although fixing the layer separation will not result in meaningful results for the out-off-plane LB mode we

expect the calculations to yield a useful guidance for the relative intensities of the in-plane S modes.
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(a) (b) (c)S mode 1 S mode 2LB mode

FIG. S15. The low energy phonon modes at the Γ-point, as sampled in configuration space. The positions of the dots

correspond to the shift d between the two layers. (a) Illustrates the LB mode, (b) and (c) the two S modes, which are

degenerate in AB(BA) (not exactly sampled) as well as AA stacking configurations.
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