Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS$_2$ and WSe$_2$

Wei Shi, Miao-Ling Lin, Qing-Hai Tan, Xiao-Fen Qiao, Jun Zhang, and Ping-Heng Tan
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
E-mail: phtan@semi.ac.cn

Abstract. Defects strongly modify optical properties in pristine and nanostructured two-dimensional (2D) materials. The ion implantation technique can be used to gradually introduce defects in semiconductor to obtain nanocrystallites (NCs) with different domain sizes. Here, we present a detailed study on the Raman and photoluminescence spectra of 2D NCs of monolayer WS$_2$ (1L WS$_2$) and 1L WSe$_2$ prepared by ion implantation. With increasing ion dosages, both E' and A_1' modes of 1L WS$_2$ exhibit a downshift in frequency and an asymmetrical broadening toward lower frequency, while the A_1 mode in 1L WSe$_2$ NCs exhibits an opposite behavior, showing asymmetrical broadening and peak shift toward higher frequency. This behavior is well understood by phonon quantum confinement of the out-of-plane optical branch whose frequency displays a minimum at Γ in pristine 1L WSe$_2$. After the ion implantation, phonons from the Brillouin zone boundary are revealed in the Raman spectra, and the corresponding assignments are identified by resonant Raman spectra at low temperature. The defects can act as trapping centers of free carriers, which result in a sharp decrease of photoluminescence (PL) emission from A exciton with increasing ion dosage. The PL peak from A-exciton in both 1L WS$_2$ and 1L WSe$_2$ NCs blueshifts with increasing the ion dosage due to the quantum confinement effect of smaller NC size. The ion-implantation results in a new emission peak of defect-bound neutral excitons below the A-exciton peak in both 1L WS$_2$ and 1L WSe$_2$ NCs. Its relative intensity to the A exciton increases with increasing the ion dosage and finally vanishes along with the A exciton. These results offer a route toward tailoring the optical properties of 2D materials by controlling the size of 2D NCs.

1. Introduction

Two-dimensional(2D) transition metal dichalcogenides (TMDs) sparked wide interest in the world due to their remarkable electronic and optical properties.[1, 2] The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the MX$_2$(M=Mo,W;X=S,Se,Te) make TMDs attractive in nanoelectronics and optoelectronics.[3, 4] However, defects may be introduced during the synthesis and fabrication process. The quality of the crystal lattice will be significantly affected
by structure defects, thus affects the MX\textsubscript{2}-based devices performance. Lattice point defects can act as very efficient trapping centers for electrons, holes and excitons in semiconductors, and crucially influence the transport and optical properties of the host material.[5, 6] Moreover, defects can break the perfect lattice structure of crystal and form small-sized nanocrystallites (NCs). [7, 8] The fundamental momentum conservation requirement \(q \sim 0 \) for the Raman process is relaxed for NCs and phonons away from \(\Gamma \) will be involved in the Raman scattering.[9] This usually gives a downshift and asymmetric broadening of the Raman peak for various NCs, such as nanowires, nanodots and defective graphene.[4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] It becomes a common concept that the Raman peaks in NCs will exhibit a redshift in frequency with decreasing the NCs domain size. However, for the 1L-MoS\textsubscript{2} NCs,[4, 18] with decreasing the NC domain size, the \(\text{E}^{\prime} \) mode exhibits a downshift in frequency and asymmetrical broadening toward lower frequency, while the \(\text{A}^{\prime}_{1} \) mode exhibits an opposite behavior, showing asymmetrical broadening and peak shift toward higher frequency. The results are attributed to the opposite phonon dispersion trends away from the \(\Gamma \) point for the two modes.[4, 18]

1L WS\textsubscript{2} and 1L WSe\textsubscript{2} are another two typical TMD materials. The Raman spectrum of 1L WS\textsubscript{2} is dominated by two first-order peaks assigned as \(\text{E}^{\prime} \) (357.7 cm-1) and \(\text{A}^{\prime}_{1} \) (419 cm-1), while the \(\text{E}^{\prime} \) and \(\text{A}^{\prime}_{1} \) modes in 1L WSe\textsubscript{2} are degenerate at 250 cm-1.[19] The resonant Raman scattering (RRS) has been recognized as an important method for probing phonon spectra of 1L and multilayer TMDs.[4, 20, 21, 22, 23]. It provides an avenue to get insight into multi-phonon process due to the relaxation of selection rules and a huge amplification of Raman intensity. Moreover, it has been reported that phonons from the boundary of Brillouin zone (BZ) may be activated by defects,[4, 17, 18, 24] which paves a way to get rich phonon information from the intriguing 2D materials.

In this work the ion-implantation technique is used to gradually introduce defects in 1L WS\textsubscript{2} and 1L WSe\textsubscript{2} to obtain corresponding NCs with different sizes. We present a detailed report on the Raman and photoluminescence (PL) spectra of 1L WS\textsubscript{2} and 1L WSe\textsubscript{2} NCs. For 1L WS\textsubscript{2}, both \(\text{E}^{\prime} \) and \(\text{A}^{\prime}_{1} \) modes show a redshift with increasing ion dosage, while the \(\text{A}^{\prime}_{1} \) of 1L WSe\textsubscript{2} shifts toward higher frequency side with increasing ion dosage. Besides the \(\text{E}^{\prime} \) and \(\text{A}^{\prime} \) modes shift and broadening, several defect-induced peaks arising from overtone, combination of phonons at BZ boundary in 1L WS\textsubscript{2} are observed. The corresponding assignments are further confirmed by resonant Raman scattering at low temperature. Both the experimental results of 1L WS\textsubscript{2} and 1L WSe\textsubscript{2} NCs can be well reproduced by the phonon confinement model originally proposed by Richter, Wang and Ley (hereafter this model is referred as the RWL model).[9] We also studied the role of defects on the PL of 1L WS\textsubscript{2} and 1L WSe\textsubscript{2} NCs. A defect-related peak below the free A-exciton peak is observed for both 1L WS\textsubscript{2} and 1L WSe\textsubscript{2} NCs, which is attributed to the defect-induced bound-exciton. The intensity of the defect-related peak relative to that of A exciton increases with increasing ion dosage and finally vanishes along with the A exciton, revealing the evolution of size and lattice structure of 1L WS\textsubscript{2} and 1L
Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS$_2$ and WSe$_2$ NCs with increasing ion dosage.

2. Experimental details

1L WS$_2$ and 1L WSe$_2$ flakes were prepared from bulk crystals onto the Si substrates capped by a 90-nm-thick SiO$_2$ layer using the mechanical exfoliation method. The layer number (N) was identified by ultralow-frequency Raman spectroscopy and photoluminescence (PL) spectra.[25] In the experiments, all the optical measurements were undertaken in backscattering configuration using a Jobin-Yvon HR800 system equipped with a liquid-nitrogen-cooled charge-coupled detector. The Raman measurements were undertaken with a \times100 objective lens (NA = 0.90) and a 1800 lines/mm grating at room temperature, while a \times50 long-working-distance objective lens (NA = 0.55) was used for Raman measurements at low temperature. The laser excitation wavelengths are 594 nm from a He-Ne laser; 568 nm, 530.8 nm and 514.5 nm from a Kr$^+$ laser; and 488 nm from an Ar$^+$ laser. A low laser power of \sim40 μW is used to avoid heating and damaging. The Montana cryostat system was employed to cool the samples down to 5 K under a vacuum of 0.4 mTorr. Mignuzzi et al. introduced defects in monolayer MoS$_2$ in an extremely controlled manner using a time-of-flight secondary ion mass spectrometry instrument with an ion dose distribution uniform to better than 99.9999%. This leads to a very accurate correlation between ion dose and average inter-defect distance. In the present work, the Ar$^+$ implantation experiment was performed with an LC-4 type vacuum system. Several works on bulk graphite and few layer graphenes had been completed based on this system.[26, 27] The kinetic energy of Ar$^+$ ions is 100 keV. The samples were subjected to nine different ion dosages, 1×10^{12}, 5×10^{12}, 1×10^{13}, 3×10^{13}, 5×10^{13}, 8×10^{13}, 1×10^{14}, 3×10^{14} and 5×10^{14} cm$^{-2}$, respectively. The corresponding samples are denoted as #n-NCa for ion-implanted 1L WS$_2$ and #n-NCb for ion-implanted 1L WSe$_2$, respectively, where n=1, 2, 3, 4, 5, 6, 7, 8, 9. The domain size was analyzed by fitting the E$'$ and A$'$ mode of 1L WS$_2$ and 1L WSe$_2$ NCs at each ion dosage.

3. Results and Discussions

Figure 1 shows the representative Raman spectra of 1L WS$_2$ and 1L WSe$_2$ exposed to different ion dosages. For both 1L WS$_2$ and 1L WSe$_2$, the intrinsic E$'$ mode is usually overlapped by the 2LA(M) mode in the Raman spectra under resonant condition.[4, 23] In order to get the intrinsic E$'$ and A$'$ modes, the 488-nm excitation is used to obtain the non-resonant Raman signal of these pristine and ion-implanted samples. The ion-implantation results in the formation of NCs of 1L WS$_2$ and 1L WSe$_2$. Figure 1(a) depicts the Raman spectra of pristine and NCs of 1L WS$_2$. With increasing ion dosage, a decrease in intensity and a redshift in frequency are observed for both E$'$ and A$'$ modes, indicating that the crystal quality become worse and worse with increasing ion dosage. Moreover, both of them have an asymmetric tail towards lower wavenumber side.
Figure 1. (Color online) Evolution of Raman spectra of ion-implanted (a) 1L WS$_2$ and (b) 1L WSe$_2$ with different ion dosages in the E$'$ and A$'_1$ ranges. The dotted lines are guides to the eye. The excitation wavelength is 488 nm.

with increasing ion dosage. When the ion dosage increases from 0 (pristine) to 1×10^{14} (#7-NCa), the E$'$ mode exhibits a redshift of 1.1 cm$^{-1}$ while the A$'_1$ mode redshifts 1.5 cm$^{-1}$. Figure 1(b) depicts the spectra of 1L WSe$_2$ NCs. The E$'$ and A$'_1$ modes are degenerated in pristine 1L WSe$_2$.[4, 19] A polarization Raman measurement indicates that the intensity of the E$'$ mode is only about 1/8 of that of the A$'_1$ mode, and thus, the evolution of Raman spectra with increasing ion dosage is dominated by the A$'_1$ mode. Obviously, the A$'_1$ mode of 1L WSe$_2$ NCs exhibit an opposite shift with respect to 1L WS$_2$ NCs with increasing ion dosage. The A$'_1$ mode of #7-NCb blueshifts 2.5 cm$^{-1}$ with respect to the pristine one. The intensity of the A$'_1$ mode in 1L WSe$_2$ NCs decrease more quickly than that of Raman modes in 1L WS$_2$ NCs with increasing ion dosage. This indicates that the lattice structure of 1L WSe$_2$ is easily damaged by ion implantation with respect to 1L WS$_2$. For #8-NCa and #8-NCb, the E$'$ and A$'_1$ modes almost vanish with only very broadened and weak signal.

Figure 1 suggests that ion-implantation results in peak shift, broadening and profile asymmetry of the Raman bands of 1L WS$_2$ NCs and 1L WSe$_2$ NCs. The softening in frequency and an asymmetric tail towards the lower frequency side of the E$'$ and A$'_1$ modes in 1L WS$_2$ NCs had been observed in various NCs.[9, 11, 12, 13, 14, 16] NCs induced by ion implantation in 1L WS$_2$ can make the fundamental $q \sim 0$ Raman selection rule relaxed, allowing participation of phonons away from Γ. This phonon uncertainty in NCs can be taken into account in the Raman process by a phonon weighting function $W(r, L)$. A Gaussian-type profile of $W(r, L)$ has been widely used
Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS\textsubscript{2} and WSe\textsubscript{2} in NCs as follows:[28, 29]

\[W(r, L) = \exp(-\alpha r^2/L^2), \]

where \(L \) is the domain size of NCs, \(\alpha \) is an adjustable confinement coefficient to determine how fast the phonon amplitude decays to the NC boundary. \(\alpha = 8\pi^2 \) has been widely used in the literatures,[9, 12, 13, 14] which gives too strong confinement. Therefore, other \(\alpha \) values had also been used to understand Raman spectra of various NCs.[4, 12, 13, 18]

In order to quantitatively analyze peak shift and asymmetrical broadening of Raman spectra in NCs, RWL model has been proposed based on \(W(r, L) \). The corresponding Raman intensity in the RWL model is given by

\[I(\omega) = \int \frac{|C(0, q)|^2}{(\omega - \omega(q))^2 + (\Gamma_0/2)^2} d^2q, \]

where \(|C(0, q)|^2 \) is a Fourier coefficient of \(W(r, L) \), \(\Gamma_0 \) is the natural broadening, \(\omega(q) \) is the phonon dispersion curve. The integration is over the Brillouin zone. In the case of a nanodot, \(d^2q \propto q^2 dq \), while for a nanowire with length \(\gg \) diameter \(d \), \(d^2q \propto q dq \). For 2D NCs with a domain size of \(L_D \), \(d^3q = 2\pi q dq \). Once \(|C(0, q)|^2 \) is chosen for 2D NCs, for an example, to be \(\exp(-q^2L_D^2/2\alpha) \) resulting from a Gaussian-type profile of \(W(r, L) \) in equation (1), the Raman lineshape of 2D NCs is composed of superimposing Lorentzian peaks centered at \(\omega(q) \) weighted by \(C(0, q) \) and is given by

\[I(\omega) = \int \frac{\exp(-q^2L_D^2/2\alpha)}{(\omega - \omega(q))^2 + (\Gamma_0/2)^2} 2\pi q dq, \]

The phonon confinement effect in 2D NCs described by equation (3) quantifies the \(q \neq 0 \) phonons participating in the scattering. If two branches of phonon dispersion curves of a 2D crystal degenerated at \(\Gamma \) contribute to a Raman mode, \(q \neq 0 \) phonons of two branches must be taken into account to reveal the effect of phonon confinement on the lineshape of Raman modes. The \(A'_1 \) mode is from an out-of-plane optical (ZO\textsubscript{2}) branch. The \(E' \) mode is from two in-plane optical branches, which are degenerated at \(\Gamma \) and split into one in-plane longitudinal optical (LO\textsubscript{2}) branch and one in-plane transverse optical (TO\textsubscript{2}) branch. The dispersions of 1L WS\textsubscript{2} in the \(E' \) and \(A'_1 \) region are taken from the work of Molina et al.[30] as depicted in figure 2(a). The dispersion is anisotropic along \(\Gamma-M \) and \(\Gamma-K \). To minimize this effect on the experimental results, each branch is obtained by averaging the dispersions between the high symmetry \(\Gamma-M \) and \(\Gamma-K \) directions. From equation (3) we calculated the line shapes of the \(E' \) and \(A'_1 \) modes of 1L WS\textsubscript{2} NCs. It is noteworthy that the physical origin of phonon confinement effect is same for the two modes, and therefore, the same confinement coefficient \(\alpha \) must be used for both the \(E' \) and \(A'_1 \) modes in 1L WS\textsubscript{2} NCs. We found that \(\alpha=8 \) gives a good fitting to the profile and peak shift of the \(A'_1 \) mode for all the 1L WS\textsubscript{2} NCs, and the representative fitting results for #2-NCa and #7-NCa are shown in Figure 2(b), and the corresponding domain size \(L_D \) are 10 nm and 2.5 nm, respectively. However, for the \(E' \) mode, its asymmetric tail extends down to about 335 cm-1, and two additional modes must be included to get a good fit to the \(E' \) profile, as had done in the case of 1L
Figure 2. (Color online) (a) The phonon branches[30] of 1L WS$_2$ related with the E‘ and A’$_1$ modes. (b) The experimental(crosses) and fitted (green solid lines) results of two 1L WS$_2$ NCs. (c) The phonon branches[31] of 1L WSe$_2$ related with the E‘ and A’$_1$ modes. (d) The experimental(crosses) and fitted (green solid lines) results of two 1L WSe$_2$ NCs. The blue and red dashed lines are the calculated curves of the E‘ and A’$_1$ modes, respectively, and the grey dashed-dotted lines are fits with Lorentzian peaks to the zone-boundary peaks. The spectra are normalized to A’$_1$.

MoS$_2$ NCs.[4, 18] The origin of the new modes activated by the ion-implantation will be discussed later.

Figure 2(c) shows the phonon dispersion of 1L WSe$_2$.[31] It is quite different from that of 1L WS$_2$. For example, in contrast to 1L WS$_2$, the ZO$_2$ branch of 1L WSe$_2$ increases in frequency away from Γ. The RWL model is also used to understand the E‘ and A’$_1$ modes of 1L WSe$_2$ NCs produced by ion implantation. Because the A’$_1$ mode
Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS\(_2\) and WSe\(_2\)

is much stronger than the E’ mode, their intensity ratio (1/8) keeps as a constant in the fitting. \(\alpha = 5\) gives a good fitting to the peak position of the A’\(_1\) mode and the fitted domain sizes L\(_D\) are 14 nm and 4 nm for \#2-NCb and \#7-NCb, respectively. The representative fitting results are shown in Figure 2(d). In contrast to the Raman spectra of pristine 1L WSe\(_2\), additional modes are also observed in the spectral range of the A’\(_1\) mode. The origin of the new modes in 1L WSe\(_2\) NCs will be also discussed later. When the domain size decreases from 14 nm to 4 nm, the A’\(_1\) mode shows a blueshift of 1.7 cm\(^{-1}\) with a broadening of 2.4 cm\(^{-1}\). It is clear that the opposite trend of phonon frequency away from \(\Gamma\) of the ZO\(_2\) branch between 1L WS\(_2\) and 1L WSe\(_2\) results in the opposite shift of the A’\(_1\) mode in the corresponding NCs with increasing the ion dosage.

The phonon modes of 1L WS\(_2\) and 1L WSe\(_2\) have been well known based on the theoretical and experimental studies.[4, 19, 30, 31] Therefore, the new modes observed in the Raman spectra of ion-implanted 1L WS\(_2\) and 1L WSe\(_2\) mainly originate from phonons away from \(\Gamma\) with high density of states. The first-order phonon mode can be activated by the relaxation of selection rule by disorders or finite domain size. The fundamental \(q \sim 0\) selection rule can be fulfilled for overtone and two-phonon combination modes by combining two phonons with opposite wavevectors. Although both of them are usually weak, they can be significantly enhanced in intensity and be clearly observed in the Raman experiments under the resonant condition.[32]

There are two kinds of the two-phonon combination modes, i.e., the subtraction mode and addition mode. If the frequency of two fundamental modes is \(\omega_1\) and \(\omega_2\) (\(\omega_1 > \omega_2\)), the frequency of the subtraction mode and addition mode is \(\omega_1-\omega_2\) and \(\omega_1+\omega_2\). The intensity of a two-phonon mode at \(\omega_1-\omega_2\) will be strongly dependent on temperature as \(n(\omega_1, T)[n(\omega_2, T) + 1]\) for creation of a phonon \(\omega_2\) and annihilation of \(\omega_1\), where \(n(\omega, T) = (e^{\hbar \omega/kT} - 1)^{-1}\) is the phonon occupation probability.[10] Therefore, Raman spectrum at low temperature can be used for the identification of two-phonon subtraction mode.[4, 33]

Therefore, in order to reveal the new modes appearing in 1L WS\(_2\) and 1L WSe\(_2\) after ion implantation, we measured the corresponding Resonant Raman spectra and low-temperature Raman spectra.

As the 514.5nm (2.41eV) excitation is close to the B exciton for 1L WS\(_2\),[34] it is used to probe the resonant Raman spectra of pristine and ion-implanted 1L WS\(_2\) at room temperature, as shown in figure 3(a). The non-resonant Raman spectra of pristine 1L WS\(_2\) is dominated by E’ and A’\(_1\) modes, while under the resonant condition, more intense modes are found at \(\sim 176\) cm\(^{-1}\), \(\sim 193\) cm\(^{-1}\), \(\sim 204\) cm\(^{-1}\), \(\sim 214\) cm\(^{-1}\), \(\sim 231\) cm\(^{-1}\), \(\sim 265\) cm\(^{-1}\), \(\sim 298\) cm\(^{-1}\), \(\sim 311\) cm\(^{-1}\), \(\sim 325\) cm\(^{-1}\). The most remarkable feature is the intensity enhancement of Raman peak at \(\sim 353\) cm\(^{-1}\), which overlaps with the E’ mode. Similar results has been reported and some of them have been assigned.[4, 19, 35] For ion-implanted 1L WS\(_2\), some additional modes arise because of the relaxation of Raman selection rule in the NCs. Two obvious peaks are observed at \(\sim 148\) cm\(^{-1}\) and \(\sim 386\) cm\(^{-1}\). The assignment will be done later. All the modes in the ion-implanted sample exhibit a decrease in peak intensity due to its worse crystal quality. Two peaks at \(\sim 204\) cm\(^{-1}\) and \(\sim 214\) cm\(^{-1}\) are too weak to be observed, while
the peak at ~ 176 cm$^{-1}$ become stronger relative to the intensity of E' and A'_1 modes. Similarly, resonant Raman spectroscopy of pristine 1L WSe$_2$ and 1L WSe$_2$ NCs are performed using a 594 nm laser line at room temperature, as shown in Figure 3(b). There are no additional modes appear in ion-implanted 1L WSe$_2$ with respect to the pristine one. However, relative to the mode at 260 cm$^{-1}$, several modes become stronger.
in intensity after ion-implantation. In the spectral region between 80 and 175 cm$^{-1}$, the peak at 132 cm$^{-1}$ is too weak to be observed in pristine 1L WSe$_2$, but is clearly observed in ion-implanted one. The peak at ~ 157 cm$^{-1}$ can be obviously resolved from the background signal.

![Raman Spectra](image)

Figure 4. (Color online) Resonant Raman spectra at 5K (black solid lines) and 300K (Blue solid lines) of (a)1L WS$_2$ NCs and (b)1L WSe$_2$ NCs. The insets show the fits to the Raman peaks at the corresponding ranges. The Si Raman peak at 520 cm$^{-1}$ is indicated by asterisk (*).

Based on the frequency match between the experimental values and the theoretical ones from the calculated phonon dispersion curves, one can assign the observed one-phonon Raman modes at zone center and zone edge, the overtone of the fundamental
modes and the two-phonon subtraction and addition modes. To identify the two-phonon subtraction and addition modes, resonant Raman spectra of 1L WS$_2$ NCs and 1L WSe$_2$ NCs are measured at 300K and 5K, as shown in Figure 4(a) and 4(b), respectively. The Raman modes at 5 K show a blue shift relative to the corresponding modes at 300 K, and the two-phonon subtraction mode should vanish at 4K. For simplicity, the peak positions mentioned below refer to the peaks at 5 K. The Raman peak of Si from substrate is indicated by asterisk in Figure 4. Most of the Raman peaks in pristine 1L WS$_2$ and 1L WSe$_2$ have been assigned previously based on the results at room temperature.[4, 19, 36] The peak at \sim 177 cm$^{-1}$ in 1L WS$_2$ is previously attributed to a two-phonon subtraction mode of E$'$(M)TO_2-LA(M).[19, 36] It was also assigned to the LA(M) mode recently.[35] Besides, the peak at \sim 149 cm$^{-1}$ in 1L WS$_2$ NCs can be denoted as ZA(M) or E$''$(M)TO_1-LA(M) based on frequency match and the phonon dispersion.[30] Based on the presence of the peaks at 149 cm$^{-1}$ and 177 cm$^{-1}$ at 5K, the two modes are assigned as ZA(M) and LA(M), rather than E$'$(M)TO_1-LA(M) and E$'(M)^{TO_2}$-LA(M), respectively. The peak at \sim 231 cm$^{-1}$ disappears at 5 K, confirming its assignment of A$'$(M)-LA(M).[35] Similarly, for 1L WSe$_2$, the peaks \sim 136 and \sim 159 cm$^{-1}$ can not be assigned as A$'$(M)-LA(M) and E$'(M)^{LO_2}$-TA(M). Detailed fitting of the resonant peaks at 5 K near the LA(M) and E$'$ peaks in 1L WS$_2$ are shown in the left and right insets of figure 4(a), respectively. The corresponding fitting of the resonant peaks near the E$'$ peak in 1L WSe$_2$ are shown in the inset of figure 4(b). The assignment of the observed modes in 1L WS$_2$ and 1L WSe$_2$ based on the frequency match and the corresponding phonon dispersion curves is summarized in Table 1.

Defect engineering had been used to modulate the optical properties of TMDs, and the strong and stable PL emission from defect sites had been realized in 1L MoS$_2$.[38] We performed micro-PL measurements of 1L WS$_2$ and 1L WSe$_2$ NCs to probe the role of defects on the corresponding PL spectra. Figure 5(a) shows the representative PL spectra of 1L WS$_2$ under different ion dosages. The dependence of A exciton intensity on the ion dosage is summarized in figure 5(b). The PL spectrum of pristine 1L WS$_2$ is dominated by A exciton (\sim 2 eV), which exhibits significant intensity enhancement relative to bulk WS$_2$ because of its direct bandgap semiconductor. The ion implantation can induce some defects and disordered structures in 1L WS$_2$, which can act as carrier trapping center and weaken the PL intensity of the A exciton. Indeed, even the ion dosage is as small as 1×10^{12} (#1-NCa), the A exciton intensity shows a sharp decrease while the corresponding Raman spectrum is very similar to that of the pristine one. With increasing ion dosage, the PL intensity continues to decrease. The larger the implantation ion dosage is, the worse the crystal quality of 1L WS$_2$ is and NCs act as efficient carrier trapping centers and quench the PL emission from 1L WS$_2$ NCs. When the ion dosage increases up to 1×10^{14} (#7-NCa), the PL emission from 1L WS$_2$ NCs completely vanishes. However, the Raman feature is preserved with half intensity of the A$'_1$ mode observed in pristine 1L WS$_2$ (See Figure 1(a)). This means that the crystal quality of 1L WS$_2$ NCs is not so bad although the corresponding PL emission is quenched by the carrier trapping centers. Thus, PL emission from A exciton is highly sensitive to
Table 1. The assignment of each Raman mode observed in the resonant Raman spectra of 1L WS\textsubscript{2} NCs and 1L WSe\textsubscript{2} NCs based on phonon dispersion curves\cite{30, 31} and frequency match. All peak positions are in cm-1.

<table>
<thead>
<tr>
<th>1L WS\textsubscript{2} NCs</th>
<th>5K</th>
<th>Assignment</th>
<th>1L WSe\textsubscript{2} NCs</th>
<th>5K</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>149</td>
<td>ZA(M)</td>
<td>100</td>
<td>TA(M)</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>177</td>
<td>LA(M)a</td>
<td>110</td>
<td>ZA(M)</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>189</td>
<td>LA(K)b</td>
<td>131</td>
<td>132</td>
<td>LA(M)</td>
</tr>
<tr>
<td>193</td>
<td>194</td>
<td>136</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>196</td>
<td>157</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>232</td>
<td>$A_1^\prime - LA(M)$a</td>
<td>201</td>
<td>2TA(M)</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>290</td>
<td>2ZA(M)</td>
<td>219</td>
<td>221</td>
<td>TA(M)+ZA(M)c</td>
</tr>
<tr>
<td>298</td>
<td>299</td>
<td>E\prime(\Gamma)c</td>
<td>231</td>
<td>233</td>
<td>LA(M)+TA(M)</td>
</tr>
<tr>
<td>311</td>
<td>314</td>
<td>LA(M)+TA(M)</td>
<td>239</td>
<td>242</td>
<td>LA(M)+ZA(M)c</td>
</tr>
<tr>
<td>324</td>
<td>325</td>
<td>E\prime(M)TO_{1.c}</td>
<td>245</td>
<td>247</td>
<td>E(M)LO_{2}</td>
</tr>
<tr>
<td>345</td>
<td>347</td>
<td>E(M)TO_{2.c}</td>
<td>250</td>
<td>252</td>
<td>E(M)A(\Gamma)c</td>
</tr>
<tr>
<td>353</td>
<td>354</td>
<td>2LA(M)a</td>
<td>258</td>
<td>261</td>
<td>$A_2^\prime(M)$c</td>
</tr>
<tr>
<td>357</td>
<td>359</td>
<td>E(M)ab</td>
<td>261</td>
<td>264</td>
<td>2LA(M)d</td>
</tr>
<tr>
<td>367</td>
<td>367</td>
<td>E(M)LO_2</td>
<td>263</td>
<td>269</td>
<td>$A_1^\prime(M)$c</td>
</tr>
<tr>
<td>385</td>
<td>387</td>
<td>$A_2^\prime(M)$</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>420</td>
<td>A(\Gamma)ab</td>
<td>318</td>
<td>345</td>
<td>E(M)LO_1+TA(M)</td>
</tr>
<tr>
<td>553</td>
<td>553</td>
<td>$A_1^\prime(M)+ZA(M)$</td>
<td>375</td>
<td>378</td>
<td>E(M)LO_2+TA(M)</td>
</tr>
<tr>
<td>583</td>
<td>585</td>
<td>$A_1^\prime(M)+LA(M)$a</td>
<td>394</td>
<td>398</td>
<td>3LA(M)d</td>
</tr>
<tr>
<td>618</td>
<td>618</td>
<td>E(M)LO_1+2LA(M)</td>
<td>398</td>
<td>402</td>
<td>$A_1^\prime(M)+LA(M)$d</td>
</tr>
<tr>
<td>638</td>
<td>638</td>
<td>E(M)LO_1+2ZA(M)</td>
<td>434</td>
<td>434</td>
<td>E(M)LO_2+2TA(M)</td>
</tr>
<tr>
<td>702</td>
<td>704</td>
<td>4LA(M)a</td>
<td>474</td>
<td>492</td>
<td>E(M)TO_2+2LA(M)</td>
</tr>
<tr>
<td></td>
<td>704</td>
<td>512</td>
<td>512</td>
<td></td>
<td>E(M)LO_2+2LA(M)</td>
</tr>
<tr>
<td></td>
<td>704</td>
<td>535</td>
<td>539</td>
<td></td>
<td>2A(M)c</td>
</tr>
</tbody>
</table>

a Reference\cite{35}.
b Reference\cite{37}.
c Reference\cite{4}.
d Reference\cite{19}.

the crystal quality while Raman spectroscopy is very sensitive to detect the presence of TMD NCs in the sample. Another feature in 1L WS\textsubscript{2} NCs is that the PL emission of the A exciton blueshifts with decreasing domain size of 1L WS\textsubscript{2} NCs, as indicated by the dashed line in 5(a). This is attributed to the quantum confinement effect of the A exciton in 1L WS\textsubscript{2} NCs, which have been widely observed in semiconductor quantum wells, wires and dots\cite{39}. On the other hand, the defects in 1L WS\textsubscript{2} induced by ion implantation introduce a new peak (X\textsubscript{D}) near ~ 1.88 eV, and its intensity relative to A exciton increases with increasing ion dosage. This peak is attributed to PL emission from defect-bound neutral excitons. Similar peaks had been observed in 1L WS\textsubscript{2} and 1L MoS\textsubscript{2} using plasma treatments\cite{6}. The intensity of X\textsubscript{D} relative to the A exciton increases up to a maximum in #4-NCa with ion dosage of 3×10^{13}, and then decreases and finally
vanishes along with the A exciton. Therefore, the X^D intensity relative to the A exciton can also be used as a signature of crystal quality of 1L WS$_2$. Figure 5(c) shows the representative PL spectra of 1L WSe$_2$ under different ion dosages, and the dependence of A exciton intensity on the ion dosage is summarized in figure 5(d). Similar results are obtained. The confinement effect of the A exciton in 1L WS$_2$ NCs is less significant.
Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS$_2$ and WSe$_2$ NCs.

Table 2. The domain size (L_D) of 1L WS$_2$ NCs and 1L WSe$_2$ NCs prepared by ion implantation with different ion dosages. The fitted α are 8 and 5 for 1L WS$_2$ NCs and 1L WSe$_2$ NCs, respectively.

<table>
<thead>
<tr>
<th>Ion dosage</th>
<th>1×1012</th>
<th>5×1012</th>
<th>1×1013</th>
<th>3×1013</th>
<th>5×1013</th>
<th>8×1013</th>
<th>1×1014</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_D, WS_2(nm)</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>L_D, WSe_2(nm)</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Conclusion

In summary, we report on the Raman and PL spectra of 1L WS$_2$ and 1L WSe$_2$ NCs produced by ion implantation. Although WS$_2$ and WSe$_2$ are typical TMDs with same crystal symmetry, their A'_1 of NCs exhibit opposite peak shift and asymmetric profile relative to the modes of pristine crystals, which can be well understood by phonon dispersion trend of the corresponding phonon branches away from Γ and the quantum confinement effect of phonons in the Raman scattering. This provides us a method to probe the trend of a phonon branches away from Γ for 2D materials and further for other materials. Several phonons from BZ boundary are observed in the Raman spectra of NCs, and are further confirmed by resonant Raman measurements at low temperature. For the PL study of 1L WS$_2$ and 1L WSe$_2$ NCs, a peak originates from defect-bound excitons is observed below A-exciton peak, and its intensity relative to A exciton increases with increasing ion dosage. It is found that PL emission from A exciton is highly sensitive to the crystal quality while Raman spectroscopy is very sensitive to detect the presence of TMD NCs in the sample. Our results not only provide a simple method to detect the crystal quality of 2D materials, but also offer a route toward tailoring the optical properties of 2D materials by controllable defect engineering.

Acknowledgments

This work was supported by the National Natural Science Foundation of China, Grant Nos. 11225421, 11434010, 11474277, and 11574305. J.Z acknowledge financial support from the National Young 1000 Talent Plan.

References

Chakraborty B, Matte H, Sood A K and Rao C N R 2013 J. Raman Spectrosc. 44 92–96

Lee J U, Park J, Son Y W and Cheong H 2015 Nanoscale 7 3229–3236

Yu P Y and Cardona M 2005 Fundamentals of Semiconductors: Physics and Materials Properties,
Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS$_2$ and WSe$_2$.

3rd rev. (Springer-Verlag Berlin)