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ABSTRACT: We calculated the ultralow frequency of the interlayer shear
and breathing modes of van der Waals layered materials by the linear chain
model. Some vibrational modes of different layers have exactly the same
frequency when only the nearest neighbor interactions are considered,
agreeing well with the experimental results of multilayer graphene and
MoS2. These modes are classified as a series of in-phase families based on
their eigenvectors. The frequencies of the in-phase family show self-
similarity characteristics. When the second nearest neighbor interactions
are taken into account, the constant-frequency characteristic of the in-
phase family does not hold any more. This means that the in-phase family
behavior can be used to determine the sign and strength of the second
nearest neighbor interactions unambiguously and conveniently. These
results reveal that the in-phase family behavior and the corresponding self-
similarity characteristic are robust properties in van der Waals layered materials.

1. INTRODUCTION

Since the discovery of graphene in 2004, its unique properties
have stimulated numerous experimental and theoretical
studies.1−3 Soon after, the Raman spectra of graphene on
SiO2 substrate were reported.4,5 The main spectral features of
Raman spectra in multilayer graphene and graphite are the so-
called G peak around 1580 cm−1 and the 2D band around 2700
cm−1. The 2D band profiles are sensitive to the number of
layers.6,7 By taking the interlayer impact on electronic structure
into account, Ferrari et al. successfully explained the 2D band
evolution from monolayer graphene to graphite,4 which makes
Raman spectroscopy an unambiguous, high-throughput, and
nondestructive characterization tool in the fast-growing field of
graphene. In addition to the high-frequency G peak and 2D
band, there exists a serial of the ultralow frequency shear mode
in multilayer graphene based on the theoretical prediction.6,8

By combining a high-throughput single monochromator with
ultralow-frequency notch filters, the shear mode of each
multilayer graphene with the highest frequency was observed.8

The interlayer breathing modes were also probed in few-layer
graphene.9 Some Raman-inactive shear modes of multilayer
graphene can also be resonantly observed in multilayer
graphene scrolls.10

In addition to multilayer graphene, the interlayer shear and
breathing modes are also observed in multilayer MoS2 and
WSe2.

11−15 Remarkably, the frequencies of low energy modes
in multilayer graphene, MoS2, and WSe2 can be perfectly fitted
by a simple linear chain model with only the nearest neighbor
interactions.6,8−10,15 This suggests that the interlayer frictional

characteristics of these excellent lubricants are independent of
their layer numbers. Furthermore, the interlayer shear and
breathing modes are also observed in other layered bulk
materials, such as As2S3, As2Se3, GaS, and GaSe.16 Besides the
above-mentioned materials, two-dimensional layered crystals
can be obtained in group IV elements, III−V binary
compounds, transition-metal dichalcogenides, transition-metal
oxides, etc.17−20 The interlayer shear and breathing modes are
also expected in them.
In principle, vibrational modes observed in experiments must

obey the selection rule. Consequently, some vibrational modes
are silent. However, the edge of crystal can relax the selection
rule by loss of translational symmetry. This symmetry breaking
turns some inactive modes into active ones. For example, the
Raman-inactive B2g mode at 867 cm

−1 was observed at the edge
plane of graphite,21 and the Raman-inactive shear modes of
three- to four-layer graphene were also observed in scrolled
structures at edges.10 Therefore, the interlayer shear and
breathing modes give a direct fingerprint of layered structures
and provide a direct probe of the strength of the interlayer van
der Waals interaction.8

Family behavior is not a rare phenomenon in low-
dimensional materials. The calculated optical transition
energies and resonant Raman intensities of single-wall carbon
nanotubes show 2n + m = constant family behavior.22−24 The
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calculated vibrational frequencies of C, BN, and BC3 nanotubes
display n + m = constant family behavior.25,26 Raman spectra
show that mod(n − m, 3) = 2 semiconducting carbon
nanotubes generally have greater Raman scattering intensity
than their counterparts mod(n − m, 3) = 1.27 In this paper, we
use a linear chain model to deal with general vibrational modes
of layered materials and find in-phase family and self-similarity
in the interlayer vibrational frequencies.

2. CALCULATION MODEL AND METHOD
We consider the simple linear chain model accompanied by the
force-constant method to investigate the interlayer shear and
breathing modes of layered materials (Figure 1). The empirical

force-constant method has been widely used to calculate the
phonon dispersions of graphene, BN, BC3, nanotubes,
etc.6,25,28,29 The linear chain model accompanied by the
interatomic stretching and shear force constants has previously
been used to explain the vibrational frequency of epitaxial thin
films and the shear and breathing modes of multilayer
graphene, MoS2, and WSe2.

8,10,13−15,30 As shown in Figure 1,
regardless of the detailed structures, multilayer MoS2 and
graphene can be reduced to the linear chain model if only the
interlayer shear and breathing modes are concerned. For N
layer structures, there are three acoustic modes, 2(N − 1) in-
plane shear modes and N − 1 breathing modes. The interlayer
vibrational modes can be computed by diagonalizing the
corresponding 3N × 3N dynamical matrix.

3. CALCULATED RESULTS AND DISCUSSION
3.1. Nearest Neighbor Interaction. As in multilayer

graphene, MoS2, and WSe2,
8,10,14,15 only the nearest neighbor

interaction is taken into account, and farther interactions are
neglected in this section. Under these conditions, there are
three force constants for the breathing mode: two tangential
force constants K1

x and K1
y (in-plane constant) for the shear

mode and one radial force constant K1
z (out-of-plane constant).

By diagonalizing the dynamical matrix, the frequency ωi(N) of
the ith vibrational mode in N layers structure is given by
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where i = 1, 2, ..., N, c is the speed of light, ρ is the single-layer
mass per unit area, and N is the total number of layers.
Therefore, ωN(N) is the highest frequency mode and ω1(N) is
the lowest one. The corresponding displacement eigenvector
ei,j(N) of the jth layer in the ith mode is given by
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For i = 1, ω1
x/y/z(N) = 0, and every component of the

eigenvector is the same. Obviously, it is the translational mode
along x, y, or z direction. For i = 2, 3, ..., N, the above equations
give the frequencies and eigenvectors of the 3(N − 1) optical
modes. The frequencies of optical modes reach the minimum
ω2

x/y/z (∞) → 0 (i = 2, N → ∞) and maximum ωN
x/y/z(∞) =

ωmax
x/y/z(i = N, N → ∞).
The frequency ωi(N) is dependent on the magnitude of the

force constant. This means shear and breathing modes have
different frequency ωi(N). To manifest their common
character, we define the reduced vibrational frequency
ωi

R(N),30 which is independent of the magnitude of the nearest
neighbor force constant.
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It is clear that the reduced frequency ωi
R(N) has no

relationship with the nearest neighbor force constant K1
x/y/z.

Furthermore, the reduced frequencies of the interlayer shear

Figure 1. Structure of the multilayer MoS2 (left), multilayer graphene
(right), and the linear chain model (middle). K1 represents the nearest
neighbor interaction.

Figure 2. Reduced frequencies of different layer numbers. The vertical lines mark the vibrational mode with the same frequency. The calculated
results (○) agree well with the experimental data of MoS2 (■ and ◆).14 Some layer numbers of the lowest frequencies marked by the vertical lines
are labeled.
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and breathing modes have exactly the same evolutions with
layer numbers. Therefore, we only discuss the reduced
frequency ωi

R(N) from now on, instead of the frequency
ωi

x/y/z(N).
The calculated reduced frequencies are given in Figure 2,

compared with the experimental results of multilayer MoS2.
14 It

is clear that the calculated reduced frequencies agree well with
the Raman shifts of the breathing mode of MoS2. For few-layer
MoS2, the experimentally measured frequencies of shear mode
are a little smaller than the calculated results. For example, the
measured frequency of shear mode in bilayer MoS2 (22.6 cm

−1)
is 0.5 cm−1 lower than the calculated one. It is within the
experimental error range. Therefore, the frequencies of the
shear and breathing modes of MoS2 match the linear chain
model very well.
In Figure 2, the vibrational modes with exactly the same

frequencies are marked by the vertical lines. For example,
according to eq 4, the reduced frequency ωi

R(N) of bilayer is
ω2

R(2) = sin(π/4). For even layer numbers, ωN/2 + 1
R (N) =

sin(π/4) if i = N/2 + 1. Therefore, the ith mode of N layers (N
is even and i = N/2 + 1) have exactly the same frequency and
are located on the vertical line of N = 2 in Figure 2. Generally,
the ith mode of N layers has exactly the same frequency with
the (m × i − m + 1)th mode of m × N layers (m = 2, 3, 4, ...).
Why do these modes have exactly the same frequencies? To

reveal the mechanism, we depict some vibrational modes in
Figure 3. For the vibrational mode of bilayer with the reduced

frequency ω2
R(2) = √2/2, the upper and lower layers move out

of phase with each other (Figure 3a). The breathing and shear
modes of four layers are very similar to their corresponding
modes of bilayer. However, the second and the third layers
move in phase, not out of phase, with each other. This means
the spring connecting the second and the third layer has no
contribution to this vibration. A similar condition occurs in the
vibrational modes of six layers: the second (fourth) and the
third (fifth) layer move in the same direction with the same
amplitude. Consequently, the spring connecting the second
(fourth) and the third (fifth) layer does not function at all. As
we only take the nearest neighbor interaction into account, the
vibrational modes of four (six) layers in Figure 3a can be

viewed as a vibration of two (three) independent bilayers. This
is why these vibrational modes have exactly the same frequency.
The shear and breathing modes of the lowest frequency in

triple layers are depicted in Figure 3b. The upper and lower
layers move in opposite directions, while the middle layer
remains motionless. In six layers, the third and the fourth layers
move in phase with each other. When it comes to nine layers of
Figure 3b, the third (sixth) and the fourth (seventh) layers
move in phase with each other, as well. The vibrational modes
of six (nine) layers in Figure 3b can be viewed as two (three)
independent triple layers. Consequently, the vibrational modes
in Figure 3b have the same frequency.
The vibrational modes of the highest frequency in triple layer

are shown in Figure 3c. The upper and lower layers move in the
same direction, while the middle layer moves in the opposite
direction. So as to keep the mass center, the amplitude of the
middle layer is two times as large as that of other layers. In six
layers, the third and the fourth layer have not only the same
movement direction but also the same amplitude. Similar
conditions also occur in the third (sixth) and the fourth
(seventh) layer of nine layers. Therefore, their vibrational
frequencies are equal. As in the previous discussion about
Figure 3a−c, two atoms enclosed by the dashed rectangle move
in phase with each other. Therefore, these modes are named as
the in-phase family. On the basis of their eigenvectors, the
vibrational modes marked by the vertical lines in Figure 2
belong to the in-phase family.
Self-similarity is found in the vibrational frequencies of

Figure 2. As shown in Figure 4a, the reduced frequencies can be
divided into two parts: lower and higher than 1/20.5. We
amplify the low- and high-frequency parts in the left and right
sides of Figure 4, respectively. The horizontal axis ranges of
Figure 4b, c, and d are 0−0.705, 0−0.495, and 0−0.38,
respectively. Although their horizontal axes are getting
narrower, Figure 4b−d look similar to each other. In Figure
4a, the lowest frequency originates from the bilayer vibration
(N = 2). In Figure 4b, c, and d, their lowest frequencies come
from N = 3, 4, and 5, respectively. Similar conditions occur in
Figure 4e, f, and g as well. Therefore, it can be clearly seen from
Figure 4 that the frequencies of interlayer vibrational modes
show self-similarity characteristics.

3.2. Second Nearest Neighbor Interaction. In previous
works on layered materials, it was usually assumed that only the
nearest neighbor interaction is important, and the interactions
between farther layers were neglected.8−10,15 Although the
calculated results based on this simple assumption agree well
with experimental data, farther interlayer interactions are not
absolutely zero in principle. In order to give a more accurate
description, we take not only the nearest neighbor but also the
second nearest neighbor interaction into account. Similar to the
condition of nearest neighbor interaction, there are three force
constants for the second nearest neighbor interaction: K2

x, K2
y ,

and K2
z. The second nearest neighbor interactions are generally

smaller than the nearest neighbor ones. So as to simplify the
condition, we assume that all force constants decay with the
same rate: K2

x/y/z/K1
x/y/z = γ. Therefore, we reduce the

independent parameters to four (K1
x, K1

y, K1
z, and γ).

The reduced frequencies with K2
x/y/z/K1

x/y/z = γ = 0.1 are
depicted in Figure 5. As marked by the solid lines of Figure 5,
the in-phase families are different from those of Figure 2. Every
in-phase family in Figure 2 has exactly the same frequency
owing to the zero second nearest neighbor interaction.
However, the frequencies of in-phase family increase with

Figure 3. Interlayer shear and breathing modes of in-phase family.
Reduced frequencies ωR are labeled at the bottom. Two atoms
enclosed by the dashed rectangle move in phase with each other.
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layer number increasing in Figure 5. For example, the reduced
vibrational frequencies corresponding to the vibrational modes

of Figure 3(a) are 0.707 (bilayer), 0.745 (four layers), and
0.752 (six layers). This frequency increase is originated from

Figure 4. Self-similarity of the interlayer vibrational frequencies. These seven figures look similar to each other, although their horizontal axes are
different. The layer numbers of the lowest frequencies are labeled.

Figure 5. Reduced frequencies with K2
x/y/z/K1

x/y/z = γ = 0.1. The solid lines mark the in-phase family. Some layer numbers of the lowest frequencies of
the in-phase family are labeled.

Figure 6. Evolution of reduced frequencies with K2
x/y/z/K1

x/y/z = γ. Frequency shifts toward either lower frequency (red shift) or higher frequency
(blue shift) compared to the γ = 0 condition. The down-right inset depicts the vibrational modes of two, four, and six layers.
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the positive second nearest neighbor force constant.6,28 As
shown in the four-layer vibrational mode of Figure 3a, the first
and the third (the second and the fourth) layers move out-of-
phase with each other. Therefore, positive force constant
between them increases the restoring force and, hence, its
vibrational frequency.
It can be clearly seen from Figure 5 that the N = 2 in-phase

family is the most sensitive one to the second nearest neighbor
interaction. Therefore, we investigate its variation with K2

x/y/z/
K1
x/y/z = γ and show the result in Figure 6. The reduced

frequency of bilayer condition (N = 2) is ω2
R(2) = √2/2, which

is independent of the second nearest neighbor interaction. On
the contrary, the frequencies of other layers are sensitive to γ.
Their vibrational frequencies increase (blue shift) when γ is
positive and decrease (red shift) when γ is negative. The larger
the absolute value of γ is, the bigger the blue or red shift is.
Therefore, the N = 2 in-phase family can be used to detect the
second nearest neighbor interaction.
As shown in Figure 2, both the shear and breathing modes of

MoS2 for N = 2 in-phase family agree well with the γ = 0
condition of Figure 6.14 The agreement also occurs in mutilayer
graphene and WSe2.

8,10,15 These confirm that the second
nearest neighbor interaction can be neglected in these crystals.
However, the second nearest neighbor interaction may take
effect under special conditions. For example, high pressure will
decrease interlayer distance, and in turn, increase the second
nearest neighbor interaction. Therefore, this interaction may be
amplified and observed under high pressure.

4. CONCLUSION
The linear chain model provides a simple, yet quantitatively
reliable, basis for the interlayer vibrational properties of layered
materials. Although interlayer shear and breathing modes are
quite different from each other, their vibrational frequencies
show similar behavior. When only taking the nearest neighbor
interaction into account, the ith mode of N layers has exactly
the same frequency with the (m × i − m + 1)th mode of m × N
layers (m = 2, 3, 4, ...). We name the constant-frequency
behavior as in-phase family based on their eigenvectors. When
the second nearest neighbor interaction is taken into account,
the frequencies of bilayer and bulk material do not change at all.
However, other frequencies increase (decrease) with the
increase (decrease) of the second nearest neighbor force
constant. Therefore, the in-phase family can be used to detect
the sign and strength of the second nearest neighbor
interaction. Furthermore, we find distinct self-similarity
characteristic in the frequencies of interlayer vibrational
modes. More importantly, the in-phase family behavior and
self-similarity characteristic are popular phenomenon in layered
materials.
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