GaNAs 的声子拉曼散射研究*

江德生 孙宝权 谭平恒

中国科学院半导体研究所,超晶格与微结构国家重点实验室,北京,100083)

李连和 潘 钟

(中国科学院半导体研究所,光电子工艺中心,北京,100083)

摘要 对分子束外延生长的 GaNAs 外延层进行了拉曼散射研究,观测到了由于导带中的 E-态所引起的共振散射 和由此产生的布里源区非 IP 点声子的拉曼峰,清晰地观测到了随氨含量增大,氨在 GaAs 中的局域模振动演变为 GaNAs 中的类 GaN 晶格声子带模,通过样品在 850 度快速热退火前后拉曼诸的对比,推测性地指认了两个与氮的 成对或成团效应有关的振动峰,

关键词 GaNAs,拉曼散射,局域模振动.

PHONON-INDUCED RAMAN SCATTERING IN GaNAs⁺

JIANG De-Sheng SUN Bao-Quan TAN Ping-Hen (NLSM, Institute of Semiconductors, CAS, Beijing 100083, China) LI Lian-He PAN Zhong (NCBT Institute of Semiconductors, CAS, Reijing 100082, China)

(NCPT, Institute of Semiconductors, CAS, Beijing 100083, China)

Abstract The Raman scattering spectra of MBE-grown GaNAs epilayers were investigated. The resonant enhancement of Raman scattering due to the E_+ states in the conduction band was observed and the Raman peaks related to the phonons at non- Γ points of the Brillouin Zone were detected. It was clearly seen that the local vibrational mode induced by nitrogen impurities evolves to the GaN-like lattice phonon mode when the nitrogen content increases. By comparing the Raman spectra measured before and after 850 C rapid thermal annealing, it was tentatively suggested that two weak peaks were induced by the pairing or clustering effect of nitrogen.

Key words GaNAs, Raman scattering, local vibrational mode.

引言

近年来,利用分子束外延或金属氧化物化学汽 相沉积成功地制备出窄带隙的 GaNAs 和 InGaNAs 固溶体薄膜材料,它们在以 GaAs 为基的近红外光 电子学中有重要的应用前景.其中,GaAs 中掺少量 N 形成 GaNAs 后,禁带宽度将迅速减小^[1].N 在体 GaAs 中的平衡溶解度很小,在非平衡生长的外延 GaNAs 中 N 含量可大大提高.氮的引入使 GaAs 禁 带宽度迅速减小,并有可能出现氮的配对及成团效 应,引起缺陷^[2].GaNAs 外延层中氮的状态及其对 能带结构的影响是一个重要研究课题.我们研究了 在非共振及共振条件下分子束外延生长的 GaNAs 拉曼光谱及其与氮含量的关系,观测到了与 E₊态 有关的共振,测到了一些在非共振条件下难以测出 的弱峰,并测量了退火前后的变化,以便对峰的起源 给予指认.

1 实验

拉曼测量主要是对在(100)取向 GaAs 衬底上 生长的 GaNAs 外延层进行的,样品是用等离子辅助的分子束外延方法生长的、厚度约为 0.25μm,其 中 N 含量为约 0.05%~5%.GaNAs 层上方一般有 50nm 厚的 GaAs 复盖层.部分样品在 N 气氛中进 行了不同温度条件下的快速热退火处理.拉曼散射 测量采用背散射配置.除了 514.5nm(绿光)的非共

国家自然科学基金(编号 29890217)资助项目 稿件收到日期 2000-08-14、修改稿收到日期 2000-11-13

The project supported by the National Natural Science Foundation of China (No. 29890217) Received 2000-08-14, revised 2000-11-13

振激发以外,还采用了波长为 632.8nm 和 676.4nm (红光,接近 E₊ - Δ, 共振, Δ, 为价带的自旋轨道分 裂能量)等激光谱线进行了近共振激发、以研究共振 行为和提高弱拉曼峰的探测灵敏度.

2 结果和讨论

图1是3块氮含量不同的样品的非共振拉曼散 射光谱,激光波长为514.5nm, E₄=2.41eV.由图 可知,氮含量为0.05%的样品其拉曼谱与一般 GaAs体材料的拉曼谱基本一致,未观测出与Ga— N键有关的振动峰.在另外两块GaNAs固溶体样 品中同时观测到类GaAs和类GaNAs固溶体样 品中同时观测到类GaAs和类GaNAs固溶体样 品中同时观测到类GaAs和类GaNAs固溶体样 品中同时观测到类GaAs和类GaNAs更激量到 的类GaAs模LO₁声子与GaAs衬底和GaAs复盖 层中的LO声子模位置相近,部分发生重叠.其频率 与体GaAs晶体中的声子频率相差不大.但由于合 金无序的作用,动量选择规则放松,在(100)方向背 散射组态测量中,LO和TO声子峰都能观测到.这 两个声子峰的相对强度在不同样品中有着相当大的 变化,说明由于合金无序,动量选择规则已大大放 松.同时,在压应力作用和合金效应的联合作用下,

图 1 3 个 **氯**组份不同的样品的非共振拉曼散射光 诸,激发光波长为 514.5 mm (*E* = 2.41eV),图中 LO₁,TO₂,LO₂分别表示类 GaAs LO,TO 声子和类 GaN LO 声子

Fig. 1 Off-resonance Raman spectra of 3 samples with different N content, the wavelength of incident light is 314. 5nm. LO₁. TO₁. LO₂ represent GaAs-like LO and TO phonons. and GaN-like LO phonon, respectively GaNAs 中类 GaAs 的 LO 声子(LO₁ 声子)频率向 低频方向移动. 类 GaN 模 LO₂ 声子位于约 472cm⁻¹ 附近,其峰宽和积分面积随氯含量增多而增大.

Fig. 2 Room temperature spectrum of resonant Raman scattering from the GaNAs sample containing 0.7% nitrogen, the wavelength of incident light is 632.8nm (photon energy 1.96eV), the inset indicates photoreflection (PR) spectrum of the same sample, showing the energy position of E_0 and E_2 +

 Δ_0 critical points

用 632.8nm 激光(E,==1.96eV)激发确实观测到了 类 GaAs 和类 GaN 模的共振加强,所得光谱如图 2 所示,这种共振是一种出射共振,即入射光子能量大 致相当于电子实跃迁能量加上声子能量,从图2可 以看出,在近共振条件下,光谱中除了晶格声子的一 级拉曼峰大大加强以外,还可看到高价声子拉曼峰 及--些在非共振条件下测不到的、有待指认的弱峰, 在氯含量为 0.7% 的样品中,可看到类 GaAs LO 声 子峰(LO₁)的高阶拉曼峰,最高到四级峰,图中拉曼 位移 Δν 位于 851cm⁻¹、873cm⁻¹和 1164cm⁻¹处的峰 分别是 LO₁ 的 二 阶, 三 阶 和 四 阶 拉 曼 峰, 位 于 760cm^{-1} 的峰被指派为LO₁+LO₂的二阶拉曼峰、二 阶以上拉曼散射的动量选择规则与一阶拉曼散射不 同,不单有 Γ 点声子参加,还有布里渊区其他点的 声子的贡献,只要参加拉曼散射的声子波矢之和为 零,散射就是容许的.图中二阶拉曼谱峰的线形反映 了声子的态密度分布,同时,我们发现其频率随温度 的变化几乎是一阶拉曼峰的两倍.在低频区,我们发 现有几个弱峰在 N 含量不同的 GaNAs 样品中都出 现. 其中, 频率为 239 和 227 cm⁻¹ 的峰被指认为类 GaAs 的 LO(L)和 LA(X)声子峰. 由于 E_- 态是 Γ

图 3 3 个 **氡**组份不同的样品的共振拉曼散射光谱,激发 光波长为 676.4nm,当氮组份 x 为 0.05%时,在 471cm⁻¹ 处的锐峰(用箭头示出)是由 N 杂质在 GaAs 中的局域 模引起的

Fig. 3 Resonant Raman spectra of 3 samples with different N content x_3 the wavelength of incident light is 676. 4nm (photon energy 1, 833eV), for the sample with nitrogen content of 0, 05% the sharp peak (shown by the arrow 1 at 471cm³ is induced by local vibrational mode of N impurity in GaAs -X 混合的结果,在拉曼散射谱中出现布里渊区 L 点和 X 点声子峰的共振加强是可以理解的.

我们在几个含氮量不同样品的共振拉曼谱中在 470cm⁻¹处附近都观测到了与 Ga-N 键有关的振 动峰.图 3 是 78K 下用 676. 4nm(E,=1.833eV)激 光激发得到的拉曼光谱.在GaAs中当N的含量很 低时(x=0,05%),在1.833eV激光的激发(E₂+₄)。 共振)下可以清晰地观测到 470cm⁻¹处锐峰,频率与 用红外吸收在掺 N 的 GaAs 中测到的局域模频率 一致^[6],该拉曼峰的半高宽很小(约 3cm⁻¹).我们指 认该峰为 N 杂质局域模引起的,此时,N 在 GaAs 中浓度还足够小,还是"杂质态"而未形成固溶体,当 N 含量增高到 1.7%和 5%时,拉曼峰(接近 E_{-} 共 振)的半高宽产生非常明显的增大(约达 $12cm^{-1}$), 其频率随 N 组分增加向高频方向有微小移动, 这表 明,随N浓度的增大,N的掺入所引起的振动,已从 N的杂质局域模振动转变成为 GaNAs 固溶体晶格 的带模振动(LO₂).由于外延层很薄,低浓度 N 杂质 引起的局域模振动的红外吸收测量是很难的.但在 共振拉曼散射中这种振动模式得到加强,因而可清 晰地加以辨认.

在用等离子辅助分子束外延方法生长的 GaNAs样品中,当含氮量较高时,在拉曼位移 Δν为 410cm⁻¹和 424cm⁻¹(比LO₂声子带频率略低)处观 测到了两个拉曼峰,它们的强度随 N 组份的增大而 增大,其频率随温度升高所产生的红移与高阶声子

图 4 氮含量为4.8%的GaNAs样品在850C快速热退火 30s前后的室温共振拉曼散射谱,激发光波长为632.8mm Fig. 4 Room temperature spectra of resonant Raman scattering from the GaNAs sample with nitrogen content of 4.8% before and after the 850C rapid thermal annealing (RTA) for 30s, respectively, the wavelength of incident light is 632.8nm

拉曼散射峰不同(比 2LO, 峰小),因而可能是与成 对或形成团蔟的氮键振动有关,为了进一步检验 410cm⁻⁻和 424cm⁻⁻峰的起源,我们测量了 GaNAs 外延层退火前后的拉曼光谱.对 GaNAs 层进行快 速热退火处理的退火温度等于和低于 700 C (简称 为"低温退火")时,样品在退火后光致发光强度得到 很大增强,表明样品中离子轰击产生的结构缺陷通 过退火被逐步消除[7],但我们发现,样品的拉曼散射 光谱在退火后基本不变,所观测到的拉曼峰都仍存 在.但当退火温度进一步升高时、拉曼光谱中有些峰 变弱以至消失.图 4 是一个氮含量为 4.8%的 GaNAs 样品在 850℃退火 30s 前后的拉曼光谱,从 图中可以看到,在退火后,大部分拉曼峰基本不变, 而位于 410cm⁻¹和 424cm⁻¹处的两个峰则在退火后 消失,这表明,这两个峰不是用低温退火可以消除的 一般结构缺陷(生长过程中离子轰击所形成的点缺 陷)所引起的.另一方面.850 C 退火样品的光致发光 表明,退火后由于氮和砷的互扩散,发光峰的位置一 般发生蓝移^[7],这表明,在高温下退火,GaNAs中的 晶格原子发生固相自扩散的几率增大,因而,410和 424cm⁻¹处拉曼峰消失,很可能是成对或成团的 N 原子在高温下移动及分解所致.

3 结语

总的来说,本工作中我们利用灵敏度比较高的 近共振拉曼散射研究了 GaNAs 薄外延层在退火前 后的振动模式,观测到了由于导带中的 E₋态所引 起的共振散射和由此产生的布里湖区非Γ点声子 的拉曼峰.清晰地观测到了随氮含量增大、氮在 GaAs中的局域模振动演变为GaNAs中的类GaN 晶格带模,并推测性地指认了与氮的成对效应有关 的振动峰.

REFERENCES

- [1]Bellaiche L, Wei S H, Zunger A. Lucalization and percolation in semiconductor alloys; GaAsN vs GaAsP, Phys. Rev. B. 1996, 54: 17568-17576
- [2]Francoeur S, Nikishin SA, Jin C, et al. Excitons bound to nitrogen clusters in GaAsN, Appl. Phys. Lett., 1999, 75(11), 1538-1541
- [3]Prokofyeva T. Sauncy T. Seon M. et al. Raman studies of nitrogen incorporation in GaAsN, Appl. Phys. Lett., 1998, 73(10); 1409-1411; Minatatrov A M. Blagnov P A. Melehin V G, et al. Ordering effects in Raman spectra of coherently strained GaAsN. Phys. Rev. B, 1997, 56 (24); 15836--15841
- [4] Cheong H M, Zhang Y, Mascarenhas A, et al. Nitrogen-induced levels in GaAsN studied with resonant Raman scattering, Phys. Rev. B, 2000, 61 (20); 13687-13689
- [5] Jones E D, Modine N A, Allerman A A, et al. Band structures of InGaAsN alloys and effects of pressure, *Phys. Rev.* B,1999,60(7): 4430-4433
- [6] Alt H, Wiedemann C H, Bethge B K. Spectroscopy of introgen-related centers in GaAs, Material Science Forum, 1997.258~263:867 -872
- [7]Li L H. Pan Z, Zhuang W.et al. Effects of rapid thermal annealing on the optical properties of GaNAs/GaAs single quautum well structure grown by molecular beam epitaxy. Jour. Appl. Phys. ,2000.87, 245